Midsize BEVs in 2018

BEVs > 200-miles

L. David Roper
roperld@vt.edu

Terminology

ICE = Internal Combustion Engine car (gasoline or diesel).
mHEV = mild Hybrid car: large ICE + very small battery + small inline electric motor.
HEV = hybrid car: small ICE + small battery + 1 or 2 electric motors.
PHEV = Plug-in Hybrid car: small ICE + larger battery + 1 or 2 electric motors + plug.
BEV = Battery Electric car: large battery + powerful electric motor + plug.
EV = Electric Vehicle: PHEV or BEV.
Electrified Vehicle: all of the above except ICE.

Energy: kilowatt-hours (kWh), Power = Energy/time = kilowatts (kW)

http://tinyurl.com/BEVsRoper
Pluginamerica.org, insideevs.com, plugshare.com
My BEV Experience and Planned BEV Future

1. Owned a **2007 ZAP Xero PK** for 3 years (2007-2010) (**30-miles range**).
2. Leased a **2012 Nissan LEAF** for 3 years (2012-2015) (**73-miles range**).
3. Leased a **2015 Nissan LEAF** for 2 years (2015-2017) (**84-miles range**).
4. Bought a **2017 Chevrolet Bolt EV** (**238-miles range**).

5. **Future Plans: Reluctantly sell CBEV.**

6. Lease/buy a **2018 Tesla Model-3** for 3 years (2018-2021)(**310-miles**).
   1. To use the many Tesla Superchargers for long-distance travel.
   2. Because it has hardware for autonomous driving.
   3. Because it is so beautiful!

7. Lease/buy a **2022 ?** for 3 years (2021-2025)(**>450-miles**)

We own **2016 Toyota RAV4 AWD Hybrid** for long-distance trips (33 mpg).
• 2007 Zap Xero PK 3-wheel pickup
• Poorly made in China.
• 7-kWh lead-acid batteries
  • Upgraded to 10-kWh
  • Tried upgrade to Lilon; failed
• 30-miles range, 40 mph top speed
• 0-30 mph in ~15 seconds
• 100-watts solar panel
• Dump bed
• Drove it >3000 miles.
• Gave it away!

• 2012 Nissan LEAF SL leased 3 years & 2015 LEAF SV 2 years.
• 24-kWh lithium-ion battery
• 94 mph top speed, 117MPGe
• 0-30 mph in ~4 seconds
• Drove 2012 SL (>33,000 miles) & 2015 SV >13,000 miles
• 2012: 73-miles range (Japan)
• 2015: 84-miles range (TN)
• 2016: 107-miles range (30-kWh)

2015 SV: daughter bought it from Nissan.
A Tesla Model S has ~150 moving parts. An ICE has ~10,000!!
Why Drive an Electric Car?

- Zero vehicle emissions to reduce pollution and global warming
- Greatly reduced noise & heat (Low noise added at low speeds.)
- High energy efficiency: ~90% (electric motor) vs ~30% (gasoline engine) and ~40% (diesel engine) (Note terminology.)
- Less total emissions than ICE car, even for 100% coal electricity. US average = 30% coal electricity. (Natural gas = 32%, renewables = 17%)
  - >80-mpg ICE for same total emissions as a BEV in U.S.
- Most emissions are eliminated with solar and wind electricity. So, ultimate fuel source is solar, wind or other renewable electricity source.
- Low “fuel” cost (~33% of equivalent gasoline car) (0% for solar PV.)
- Low maintenance cost (~25% of equivalent gasoline car)
- High performance: high torque at low speed!
- $7,500 federal tax credit (Some states have additional benefits.)
Regeneration for HEVs, PHEVs & BEVS

• The electric motor is used as a generator to charge the battery.

• When brakes are engaged except in emergencies and at very low speeds, due to kinetic energy.

• When going down a hill due to gravity.

• When accelerator is not being depressed, due to kinetic energy.
One reason why electric cars are so important, especially when solar fueled!

Passenger Travel Energy Use

kWh/passenger/mile

Taxis: 4.6
0-30 mph Acceleration is a BIG DEAL!

- High torque at low speed! Triple acceleration same efficiency as for ICE.
- Can get to the next traffic light far ahead of ICE cars with no roar.
- Can maneuver much better in tight traffic.
Why BEVs Have Only One Gear

• Electric motors have high maximum RPM (Chevy Bolt EV: 8,810 RPM)
• Electric motors have high efficiency over a broad RPM range.
• Electric motors produce high torque at low RPM.
Questions about BEVs

• Q: What do you do when you run out of electricity?
• A: What do you do when you run out of gasoline? You don’t, because you watch the fuel gauge. You fill it up when needed.

• Q: Do you have “range anxiety” when you drive?
• A: No, because I plan my trip.

• Q: What do you do when you go up a steep hill?
• A: You step on the accelerator and pass the gasoline cars.

• Q: Is the battery dangerous?
• A: Not nearly as dangerous as a tank of gasoline!
‘Driving an Escalade to buy groceries is like hanging a picture with a sledge hammer!’
Causes of Global Warming
Too many people is basic cause!

We need renewable electrical energy & electric cars!
Equivalent ICE GW Emissions to BEVs Charged on Grid

Infinite mpg for 100% solar electricity!

US Average (EV sales-weighted): 80 MPG

Note: The MPG (miles per gallon) value listed for each region is the combined city/highway fuel economy rating of a gasoline vehicle that would have global warming emissions equivalent to driving an EV. Regional global warming emissions ratings are based on 2016 power plant data in the EPA's eGRID 2016 database (the most recent version). Comparisons include gasoline and electricity fuel production emissions estimates using Argonne National Laboratory’s GREET 2017 model. The 80 MPG US average is a sales-weighted average based on where EVs were sold in 2011-2017.
U.S. Crude Oil Extraction

- Conventional Oil
- Fracking for tight oil

- Extraction
- Fit
- Amount Extracted (10^9 bbl)
Possibly $1-$1.50/gallon after EVs take over.
Varies with time.

Constant 2015 $ Gas Price

Current $ Gas Price
Electricity price is more stable than gasoline price.

Steady since 2000.
Fracking for shale gas will peak before Mt. Valley Pipeline is built! So, don’t convert your car to natural gas!
BEVs and Petroleum

- Plastic components made from petrochemicals (PCs)
- Synthetic-rubber partly made from PCs
- Metals mined using machines powered by fossil fuels
- Metal parts produced using fossil fuels
- Auto plants powered by fossil fuels
- Transport of materials and BEV using fossil fuels
Exponential Rise
Doubling time = 5.5 years
More likely natural-gas future, since U.S. extraction will peak ~2018. Gas is a bridge fuel.

Linear fits for coal, gas & nuclear

Exponential fit for renewables

Good News!

Need to rapidly change to electric cars/trains from gasoline/diesel.
BEV versus ICE Driving Costs

• Assumptions
  – Lease/buy cost is same for ICE & ~200-miles-BEV
  – Efficiency: ICE = 30-mpg; BEV = 3.8-miles/kWh
  – Both travel 75,000 miles in 5 years
  – Gasoline cost = $3/gallon; Electricity cost = $0.15/kWh

• Costs (Rough Calculation)
  – **Fuel**: ICE = $7,500; BEV = $2,960
  – **Maintenance**: ICE = $2000; BEV = $500
  – Cost difference: ICE – BEV = ($7,500 + $2000) – ($2,960 + $500) = **$6,040**.
  – If electricity is from renewable sources, CO₂ emissions cost @ $220/ton yields ~$650 (discounted 100 years @ 4%) for ICE and $0 for BEV.
### Maintenance Schedule for your 2017 Chevrolet Bolt EV

<table>
<thead>
<tr>
<th>Mileage</th>
<th>7,500 miles</th>
<th>15,000 miles</th>
<th>22,500 miles</th>
<th>30,000 miles</th>
<th>45,000 miles</th>
<th>62,500 miles</th>
<th>75,000 miles</th>
<th>87,500 miles</th>
<th>105,000 miles</th>
<th>122,500 miles</th>
<th>135,000 miles</th>
<th>142,500 miles</th>
<th>150,000 miles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actions</td>
<td>✓</td>
</tr>
</tbody>
</table>

- Rotate tires, if recommended for the vehicle, and perform Required Services.
- Replace passenger compartment air filter (or 2 years, whichever comes first).
- Drain and fill vehicle coolant circuits.

### Maintenance Schedule for your 2016 Chevrolet Cruze Limited

<table>
<thead>
<tr>
<th>Mileage</th>
<th>7,500 miles</th>
<th>15,000 miles</th>
<th>22,500 miles</th>
<th>30,000 miles</th>
<th>45,000 miles</th>
<th>62,500 miles</th>
<th>75,000 miles</th>
<th>87,500 miles</th>
<th>105,000 miles</th>
<th>122,500 miles</th>
<th>135,000 miles</th>
<th>142,500 miles</th>
<th>150,000 miles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actions</td>
<td>✓</td>
</tr>
</tbody>
</table>

- Rotate tires, if recommended for the vehicle, and perform Required Services. Check engine oil level and oil life percentage. Change engine oil and filter, if needed.
- Replace passenger compartment air filter (or 2 years, whichever comes first).
- Replace engine air cleaner filter (or every 4 years, whichever occurs first).
- Replace spark plugs and inspect spark plug wires.
- Replace spark plugs, inspect ignition coils boots. (Applies to: 1.4 L.)
- 1.8L Engine Only: Replace timing belt, idler pulley, and timing belt tensioner (or every 3 years, whichever comes first). (Applies to: 1.8 L.)
- Change automatic transmission fluid, if equipped. If filter is serviceable, change filter. (Applies to: Severe)
- Change manual transmission fluid. (Applies to: Manual, Severe)
- Drain and fill engine cooling system (or every 5 years, whichever comes first).
- Change brake fluid (or every 3 years, whichever occurs first).
- Change clutch fluid (or every 3 years, whichever occurs first). (Applies to: Manual)
- Inspect evaporative control system.
- Inspect engine accessory drive belts for fraying, excessive cracks or obvious damage (or every 10 years, whichever occurs first).
Greenhouse Gas Emissions versus vehicle costs
Electric-Car Components

• **Large DC battery** (LEAF: 30 kWh; Chevy Bolt EV: 60 kWh)
• **Powerful AC electric motor** (LEAF: 80 kW = 107 hp; Chevy Bolt EV: 150 kW = 200 hp)
• **Regeneration** of gravitational and kinetic energy (Motor is a generator, also. Same for hybrids, e.g., Prius.)
• **Chargers** (120V AC, 240V AC, 480V DC) (LEAF: 6.6 kW AC)
• **DC to**
• **Auxiliary 12V battery & DC to DC converter**
• **Cooling systems** for motor, inverter and battery
• **Possibly** heating system for battery
• **Electric steering, brakes and climate control**
• **In-cab driver information about battery level, energy used and location of charging stations**

Many BEVs have an option of one-pedal driving, using only the accelerator.
Lithium Batteries Materials

- Current collectors: nickel and copper
- Cathode materials: lithium, cobalt, nickel, manganese, phosphate, iron, aluminum
- Anode materials: graphite powder, graphene
- Electrolyte solutions: lithium salts & flame retardant
- Battery separators: polypropylene, polyethylene and ceramics
- Packaging: steel, aluminum, titanium
Lithium “Mining”
Battery Thermal Management
Chevrolet Volt/Bolt-EV Method

Refrigeration for cooling and resistance heating for glycol in warm weather.
Keep battery plugged in after charging in cold or hot weather.
Back Thermal-Management Panel
Safety of Electric Cars

• Nissan LEAF, Chevrolet Volt and Tesla Model S have top safety ratings.
• Battery was left intact in a burned out Nissan LEAF.
• Two Tesla-S sedans have been burned somewhat by a fire in the battery due to massive metal in road puncturing the battery case. Drivers unharmed. More under-battery protection was added (deflector and titanium sheet).
• \( \sim 250,000 \) gasoline car fires/year in U.S. with \( \sim 400 \) deaths & \( \sim 1200 \) injuries. Full gasoline tank has \( \sim 10 \) times the combustible energy that a Tesla battery has. Batteries made of modules separated by firewalls.
• Battery is automatically disconnected in a collision.
• Manual battery disconnect is easily done.
• EMS manuals and training are available.
EPA Driving Cycles

Urban Cycle: much stop and go

Highway Cycle: mostly steady driving
1: Vehicle Technology & Fuel. 2: Fuel Economy. 3: Comparing to Other Vehicles
4: Save/Spend More of 5 Years Compared. 5: Fuel Consumption Rate.
13: Driving Range. 14: Charge Time
Tesla Large BEVs

- **Tesla Model S AWD**
  - Range: 250/335 miles
  - Efficiency: 103 MPGe
  - Battery Capacity: 75/100 kWh
  - MSRP: $64,200-$124,700

- **Tesla Model X SUV**
  - Range: 237/295 miles
  - Efficiency: 93/86 MPGe
  - Battery Capacity: 75/100 kWh
  - MSRP: $69,300-$129,800
Tesla Model S Dual-Motor
100-miles<Range<200-Miles BEVs

- **Nissan LEAF 2018**
  - Range: 150 miles
  - Efficiency: ? MPGe
  - Battery Capacity: 40 kWh
  - MSRP: $30,065

- **BMW i3**
  - Range: 114 miles
  - Efficiency: 118 MPGe
  - Battery Capacity: 33.2 kWh
  - MSRP: $37,945

- **Ford Focus Electric**
  - Range: 115 miles
  - Efficiency: 107 MPGe
  - Battery Capacity: 33.5 kWh
  - MSRP: $22,495
100-miles<Range<200-Miles BEVs

- **Volkswagen e-Golf**
  - Range: 125 miles
  - Efficiency: 120 MPGe
  - Battery Capacity: 36 kWh
  - MSRP: $30,495

- **Hyundai Ioniq**
  - Range: 124 miles
  - Efficiency: **136 MPGe**
  - Battery Capacity: 28 kWh
  - MSRP: $29,500
100-miles<Range<200-Miles BEVs

- **Fiat 500e**
  - Range: 89 miles
  - Efficiency: 108 MPGe
  - Battery Capacity: 24kWh
  - MSRP: $32,500
  - No fast charging

- **Honda Clarity Electric**
  - Range: 89 miles
  - Efficiency: **114 MPGe**
  - Battery Capacity: 25.5 kWh
  - MSRP: $37,495
100-miles<Range<200-Miles BEVs

• **Kia Soul EV**
  – Range: 93 miles
  – Efficiency: 105 MPGe
  – Battery Capacity: 27 kWh
  – MSRP: $33,950

• **Mercedes B250e**
  – Range: 87 miles
  – Efficiency: 84 MPGe
  – Battery Capacity: 36 kWh
  – MSRP: $39,900
100-miles<Range<200-Miles BEVs

- **Mitsubishi i-MiEV**
  - Range: 62 miles
  - Efficiency: 112 MPGe
  - Battery Capacity: 16 kWh
  - MSRP: $22,995

- **Smart ED Fortwo**
  - Range: 68 miles
  - Efficiency: 114 MPGe
  - Battery Capacity: 17.6 kWh
  - MSRP: $25,000
Range of Mid-size BEVs

Tesla M3/55-kWh: 220 miles
Tesla M3/75-kWh: 310 miles
Midsize >200-Miles BEVs in 2017-8

tinyurl.com/BoltEVMManual

Chevrolet Bolt EV (238-miles)($37,495-$7,500)

Don’t confuse the Chevy Bolt EV, a BEV, with the Chevy Volt, a PHEV.

LT: $37,500
Premier: $41,780
DC CCS Fast Charging: $750

60-kWh battery
FWD
119 MPGe EPA
Sport Mode
1-pedal driving
SAE J1772 charging
Midsize >200-Miles BEVs in 2017-8

**Tesla Model 3** (220 miles EPA range) ($35,000)

- **55-kWh battery**
  - RWD
  - 15” horizontal screen only
  - Tesla Superchargers
  - Destination Chargers
  - DC CHAdeMO fast-charging
  - SAE J1772 charging
  - Charge port left rear

**Often called Model ≡**

**Options:**
- 75-kWh battery: 310 miles EPA range; $44,000 (126 MPGe)
- AWD
- Autopilot $5,000, Enhanced Autopilot (autonomous ready) $3,000
- Glass roof
- Colors other than black: $1000
Chevy Bolt EV
US design
Korean EV system
Assembled in MI.
New safety features
CCS fast charger

How many here have ordered the Tesla Model 3?

Tesla Model 3
US design & made
Autopilot available
Superchargers capable

15” horizontal display
Bolt-EV Energy Regeneration

- L driving mode allows 1-pedal driving.
- Paddle behind left side of steering wheel increases regeneration (on demand).

What I use.
Chevrolet Bolt EV 60-kWh Battery

Coolant plates between battery modules. Uses orange 5-year Dex-cool coolant.

288 flat landscape cells of 3.75 volts each
96 groups in series of 3 cells in parallel (96 x 3.75V = 360V)
Chevy Bolt EV Motor & Gear Box
Drive Shaft passes through center of motor. Tesla is similar.

Coaxial motor and drive shaft

7.05/1 parallel-helical gear reduction
Chevrolet Bolt EV Awards

- 2017 Motor Trend Car of the Year
- 2017 North American Car of the Year
- 2017 AutoGuide.com Reader’s Choice Green Car of the Year
- 2017 Green Car Reports Best Car to Buy
- 2017 Car & Driver ’10 Best Cars’ List
- 2017 Green Car Journal Green Car of the Year
- 2016 Time Magazine 25 Best Inventions of Year
- 2016 Popular Science 10 Greatest Automotive Innovations. **Plus 4 more awards!**
Roper Chevy-Bolt-EV >200-miles Trips

• **278 miles** first trip from Sterling VA to Blacksburg Va. Probably could have made trip without charging.

• **310 miles** Blacksburg to Charlottesville and back. Charged twice for 30 minutes at fast charging station in Staunton.

• **265 miles** Blacksburg to Pipestem and Hawks-Nest Resort State Parks WV. Charged at both.

• **218 miles** Blacksburg to Grayson Highlands State park and back. Had ~25% charge left for ~291-miles range.
Roper Chevy-Bolt-EV >200-miles Trips

• **441 miles** Blacksburg to Shenandoah National Park to Front Royal and back. Charged at Staunton both directions.

• **427 miles** Blacksburg to Raleigh NC and back. Charged at Greensboro NC both directions.
Midsize >200-Miles BEVs

**Volkswagen ID BUZZ**
- 111-kWh battery
- 270-miles EPA range
- AWD
- 369 hp
- Heads-up display
- 16’ length
- Autonomous capable
- Available in 2022
>200-Miles BEVs in 2017-9

- Nissan LEAF II? (~235 miles)(2017)
- Hyundai Kona SUV (~217 miles)(2018)
- Volkswagen (~215 miles)(2018)
- Ford Model E (~200 miles)(2019)(Made Mexico?)
- Volvo XC40 (~200 miles)(2019)
- Audi Quattro eTron SUV (~250 miles)(2018)
- Others? Probably!

Tax credit: $7,500 until 200,000 BEVs/brand
Qualifying vehicles made by that manufacturer are eligible for 50 percent of the credit if acquired in the first two quarters of the phase-out period and 25 percent of the credit if acquired in the third or fourth quarter of the phase-out year.
Possible Tesla Model Y AWD SUV
Expiration of BEV Tax Credits

**$7,500 Federal Credit (US) Phase-Out Estimates** (data through 12/2016)

<table>
<thead>
<tr>
<th>AUTOMAKER</th>
<th>Current</th>
<th>9M Change</th>
<th>FY-2017</th>
<th>Q1-18</th>
<th>Q2-18</th>
<th>Q3-18</th>
<th>Q4-18</th>
<th>Q1-19</th>
<th>Q2-19</th>
<th>Q3-19</th>
<th>Q4-19</th>
<th>Q1-20</th>
<th>Q2-20</th>
<th>Q3-20</th>
<th>Q4-20</th>
<th>Q1-21</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Motors</td>
<td>124,290</td>
<td>+24,031</td>
<td>180</td>
<td>195</td>
<td>7,500</td>
<td>7,500</td>
<td>3,750</td>
<td>3,750</td>
<td>1,875</td>
<td>1,875</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nissan</td>
<td>103,597</td>
<td>+11,075</td>
<td>120</td>
<td>143</td>
<td>158</td>
<td>173</td>
<td>188</td>
<td>7,500</td>
<td>7,500</td>
<td>3,750</td>
<td>3,750</td>
<td>1,875</td>
<td>1,875</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tesla*</td>
<td>110,849</td>
<td>+38,854</td>
<td>175</td>
<td>199</td>
<td>7,500</td>
<td>7,500</td>
<td>3,750</td>
<td>3,750</td>
<td>1,875</td>
<td>1,875</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ford</td>
<td>84,681</td>
<td>+21,318</td>
<td>110</td>
<td>120</td>
<td>130</td>
<td>142</td>
<td>157</td>
<td>169</td>
<td>183</td>
<td>198</td>
<td>7,500</td>
<td>7,500</td>
<td>3,750</td>
<td>3,750</td>
<td>1,875</td>
<td>1,875</td>
</tr>
<tr>
<td>Toyota</td>
<td>47,248</td>
<td>+2,422</td>
<td>82</td>
<td>96</td>
<td>108</td>
<td>120</td>
<td>135</td>
<td>150</td>
<td>165</td>
<td>180</td>
<td>195</td>
<td>7,500</td>
<td>7,500</td>
<td>3,500</td>
<td>3,500</td>
<td>1,875</td>
</tr>
<tr>
<td>BMW</td>
<td>37,050</td>
<td>+14,446</td>
<td>72</td>
<td>84</td>
<td>96</td>
<td>111</td>
<td>126</td>
<td>141</td>
<td>156</td>
<td>171</td>
<td>186</td>
<td>7,500</td>
<td>7,500</td>
<td>3,500</td>
<td>3,500</td>
<td>1,875</td>
</tr>
</tbody>
</table>

Current Expectations For $7,500 Federal Credit Phase-Out For Major US EV Makers. Grey shaded areas are expected cumulative future sales in 000s. Colored blocks indicate stage of the Federal credit a particular OEM is at.
Fitting Hyperbolic Tangent Curves to BEV Range Data.

Large BEVs will probably reach >500-miles range!

Goodbye, gasoline cars!

2012 LEAF

2014 LEAF

2016 LEAF

2017 Chevy Bolt EV

2018 Tesla Model 3 (75 kwh)

2018 LEAF
These will be “Game Changers”!

• **Apartment dwellers** can charge once or twice a week at a fast public charging station and/or top the battery up at work each day.

• **Long distance travel** is possible!

• Chevrolet expects to make 25,000 Bolts in 2017.

• Tesla has ~500,000 $1000 orders for Model.
  – Tesla plans to build 500,000 Model-3s in 2018.

• Almost all car companies, except Chrysler, are planning to have >200-miles BEVs by 2020.
Vehicle to Grid (V2G)

- Millions of electric cars connected to the national grid.
- Charge at early morning low-grid-load times and drive to work; finish by 6-7 AM.
- Recharge at work 8 AM to 2 PM.
- Discharge into grid in evening at high-grid-load times 6 PM to 11 PM. (~$3000/year profit)
- Old batteries from electric cars in locations for grid storage.
Electric Cars’ Batteries as Home Backup Power (V2H)

• Backup power for homes when the grid is down.

• Nissan may market this soon.
  – Testing in 6,000 homes in Japan.

• Requires a house circuit with needed devices on it.
Vehicle to Home (V2H)
Leasing or Buying BEVs

- BEV technology is changing rapidly!
- Batteries lose capacity ~0.035%/charging cycle. (This may reduce for new battery chemistries.)
- Federal tax credit of $7,500 for first 200,000 BEVs/brand. (Tesla may be out for Model 3.)
- Battery replacement? (~$6,000 for LEAF)
- **Leasers/buyers organize for bulk buying discount.**
- I recommend leasing new BEVs. One-half tax credit off lease price, not at full tax credit as when buying.
- Buying used BEVs at low prices ($8000- LEAFs)
# 10 Fastest Selling Used Cars

## The Top 10 Fastest-Selling Cars

<table>
<thead>
<tr>
<th>Rank</th>
<th>Model</th>
<th>Fuel Type</th>
<th>Average Days on Market</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>FIAT 500e</td>
<td>Electric</td>
<td>22.2</td>
</tr>
<tr>
<td>2</td>
<td>BMW i3</td>
<td>Plug-in Hybrid</td>
<td>23.2</td>
</tr>
<tr>
<td>3</td>
<td>Lexus IS 200t</td>
<td>Gasoline</td>
<td>24.5</td>
</tr>
<tr>
<td>4</td>
<td>Toyota Plug-in Hybrid</td>
<td>Plug-in Hybrid</td>
<td>24.7</td>
</tr>
<tr>
<td>5</td>
<td>Hyundai Veloster Turbo</td>
<td>Gasoline</td>
<td>24.9</td>
</tr>
<tr>
<td>6</td>
<td>Nissan LEAF</td>
<td>Electric</td>
<td>25.0</td>
</tr>
<tr>
<td>7</td>
<td>Scion FR-S</td>
<td>Gasoline</td>
<td>25.1</td>
</tr>
<tr>
<td>8</td>
<td>Mercedes-Benz GLC</td>
<td>Gasoline</td>
<td>25.7</td>
</tr>
<tr>
<td>9</td>
<td>Ford Fusion Energi</td>
<td>Plug-in Hybrid</td>
<td>26.1</td>
</tr>
<tr>
<td>10</td>
<td>Tesla Model S</td>
<td>Electric</td>
<td>26.1</td>
</tr>
</tbody>
</table>

**OVERALL AVERAGE**

= EV
Buying a Used Nissan LEAF

• 2011-2: SV & SL models, 73-miles range
  – 24-kWh battery subject to capacity loss due to extreme heat
  – No SOC digital meter.
• 2013: 84-miles range.
  – New less expensive S model.
  – Digital SOC meter
• 2015: New battery less heat sensitive
• 2016: 30-kWh battery option
  – 107-miles range
• Prices: $9,000-$12,000
EV Buying Experience

• Dealers are often poorly informed about plug-ins features and technology.
• Dealers are often poorly informed about different available charging possibilities.
• Customers are often poorly informed about plug-ins features and technology and charging.
• Dealers do not like the fact that it takes longer to inform customers about plug-ins than ICEs.
• Dealers do not like low maintenance costs for BEVs.
• **For the above reasons Tesla decided to not sell their cars through dealers.**
Charging BEVs

• **Level-1**: 120-volts AC, *1.12-kW*, for all BEVs & PHEVs (Everywhere!) (*SAE-J1772 cord that comes with the PHEV*)

• **Level-2**: 240-volts AC, *3.3-kW & 6.6-kW charging station* with SAE-J1772 plug, for all BEVs & PHEVs (Your parking space, Kroger, InnVT, Campus Automotive)

• **Level-3**: 480-volts DC, *35-kW - 120-kW*, only for BEVs (Blacksburg Town Hall 35-kW)
  – [CHAdEMO](http://www.cha-de-mo.org) standard (*Asian*) (*150-kW in 2017*)
  – [SAE CCS](http://www.sae.org) standard (*USA & Europe*) (Level-2/3 one plug)

Most charging will occur at home in a garage, driveway or parking space.
Charging BEVs

• SAE-J1772 cord that comes with the PHEV can have a **pigtail that allows level-2 charging** with a standard 240-volts outlet.

• An **adaptor is available** to allow level-2 SAE-J1772-plug charging at Tesla V-1Wall Connectors.

• **350-kW under study**: Installed 4 stations in Calif.

• **Tesla Wall Connector**: 240-volts AC, **20-kW** for Tesla BEVs, but adaptor can allow other BEVs.

• **Tesla Superchargers**: 480-volts DC, **120-kW** only for Tesla BEVs (planning for **170-kW**)
Tesla Supercharger in Carlisle PA
Tesla Supercharger in Future

Largest has 50 stations in Shanghai China!
Plans to finally have all Superchargers on solar energy.
Chargeway: Simplified Charging-Station Notation

SAE J1772    CCS

CHAdemo

Tesla

STANDARD

1-3 kW
20-99 kW
100-199 kW
200-299 kW
300-399 kW

4-19 kW
70-145 miles/hour
140-285 miles/hour
700-1470 miles/hour
1500-12973 miles/hour

FAST CHARGE

1  2
1  2
4  5  6
4  5  6
4  5  6

NORTH AMERICA
Chargeway:
Simplified Charging-Station Notation
Time to charge for travel:

40 miles (Average Work Day) to 250 miles (Road Trip):

1. 8 Hours
2. 90 Mins
3. 25 Mins
4. 10 Mins
5. 5 Mins
6. 2 Mins

COMING SOON! COMING SOON!
Charging starts off fast and decreases slowly at first and then decreases faster toward the end.

Charging from 10% to 80% is quick and typically provides ample range to travel between most Superchargers. Charging from 80% to 100% doubles the charge time because the car must reduce current to top off cells. Actual charge times may vary.
Charging Time (LEAF)
50%->100%
Charging Time (CBEV)
50%→100%
Charging BEVs

- Most charging will occur at home in a garage, driveway or parking space.
- Charging at work doubles the range.
- I charge my >200-miles CBEV to **90% when below 50%**, except for long trips the next day.
- I like to have **>20 miles left** when I get home.
- **ICE’d!** Leave firm polite note on windshield of ICE.
- Road-charging etiquette
  - Charge only when necessary.
  - Charge up and move on.
  - Don’t unplug a charging car.
  - Leave note asking charging car to plug yours in.
  - Neatly wind the cable on its holder after charging.
Light-Pole Charging Stations
Laundromats & Gas Stations

• Laundromats were mostly replaced by home washers/dryers.
• Gas stations will be mostly replaced by home charging stations and fast public charging stations.
Includes both public and private stations.
Charging Times for Empty 60-kWh Battery

- Level 1, 1.12 kW: ~54 hours
- Level 2, 3.3 kW: ~18 hours
- **Level 2, 6.6 kW**: ~9 hours (7.2 kW: ~8 hours)
- **Level 3, 35 kW**: ~1.75 hours (BB Town Hall)
- Tesla Wall Charger, 20 kW: ~3 hours
- Tesla Supercharger, 120 kW: ~0.5 hours
- 150 kW: ~0.4 hours
- 170 kW: ~0.35 hours
- 350-kw: ~0.17 hours

Battery is seldom empty. I set my CBEV timer to finish charging by 6 AM.
Charging BEVs

• **Plugshare.com** to locate charging stations.
• BEVs have charging-stations locator in navigation.
• Some stations have a fixed fee ($3 at **Roanoke Quick Charge downtown**) & some have an hourly charge ($1/hr at **Virginia Museum of Transportation**).
• **ChargePoint.com** stations (Phone app & RFID) (**Salem Veterans Medical Center**) (free or automatic fee)
• **Greenlots.com** stations (Phone app & RFID) (**Blacksburg Town Hall**) (free or automatic fee)
• **GEWattstations.com** (Phone app & RFID) (**Roanoke River House**) (free or automatic fee)
• Independent RFID (**Hotel Floyd**)  
• Free Plug In (**2 Krogers, InnVT & Campus Automotive**)
High-Power (L3) Charging Stations

Plugshare.com

Blacksburg
240-Volts (L2) Charging Stations

Plugshare.com

Blacksburg
50x500 Tesla

139x500 Superchargers by End of 2017

Teslamotors.com/supercharger

Building about 1 a day!
Will double in 2017!

6-12 charging stations per Supercharger.
6-station Supercharger costs ~$250,000; a gasoline station cost ~$2,000,000.
Nearby High-Power Stations

- **CHAdeMO 35-kW (CM)** (Asian BEVs)
  - Blacksburg VA (Not available on home football days.)
  - Roanoke VA (2 locations) (Downtown one often out!)
  - Staunton VA
  - Charlottesville VA (3 locations)
  - Harrisonburg VA
  - Front Royal Visitors Center (I81-I66 intersection)

- **CCS 35-kW (CS)** (US & Europe BEVs)
  - Blacksburg VA (Not available on home football days.)
  - Staunton VA
  - Charlottesville VA (2 locations)
  - Harrisonburg VA
  - Front Royal Visitors Center (I81-I66 intersection)
Nearby Tesla Charging Stations

- **Tesla Superchargers 120-kW (TS)(worldwide)**
  - Wytheville VA (6 stations)
  - Lexington VA (8 stations)
  - Strasburg VA (6 stations) (I81-I66 intersection)
  - Glen Allen VA (8 stations) (near Richmond)
  - Burlington NC (8 stations)
  - Charleston WV (8 stations)
  - Bristol TN (8 stations)

- **Tesla Wall Chargers 20 kW (TW)(worldwide)**
  - Courtyard Marriott, Blacksburg
  - Holiday Inn, Christiansburg
  - Hotel Floyd, Floyd
  - Hotel Roanoke, Roanoke
  - Hampton Inn, Salem
  - Inn at Riverbend, Pearisburg
  - Claiborne House B&B, Rocky Mount
  - Foxfield Inn, Charlottesville
  - Hyatt Place, Charlottesville
  - Oakhurst Inn, Charlottesville
  - Iris Inn B&B, Waynesboro
  - Primland, Meadows of Dan
  - More being added every day
How Many U.S. Charging Stations (CS) Are Needed?

- **121,000** gasoline filling stations in U.S.
- Assume 4 pumps/station: 484,000 pumps
- **43,000** charging stations (CS) in U.S.
- 63% own home, so can install charging station
  – Assume 95% charging at home.
- $484,000 \times (0.37 + 0.05) = 179,000$ CS needed
- 2 years to needed CSs: \((179-43)/2 = 68,000/yr\)
- 3 years to needed CSs: \((179-43)/3 = 45,000/yr\)
- 4 years to needed CSs: \((179-43)/4 = 34,000/yr\)
- 5 years to needed CSs: \((179-43)/5 = 27,000/yr\)
- **U.S. gas stations are running out of time.**
Cost for Charging Stations

- Assume $250,000 for 6 fast charging stations.
- 2 years to needed CSs: 68,000/yr: $3-billion/yr
- 3 years to needed CSs: 45,000/yr: $2-billion/yr
- 4 years to needed CSs: 34,000/yr: $1.5-billion/yr
- 5 years to needed CSs: 27,000/yr: $1.1-billion/yr
- Tesla is building Superchargers at about 1/day:
  - 365 x 6 = 2190 CS/yr: $91-million/yr
  - Plans to finally have all Superchargers on solar energy.
Continuous Charging Road

- Max Power into Vehicle: 20 kW
- Max Speed: 120 km/hr
- Alignment Tolerance: ±200 mm
- Vehicle Pad Size: 350 mm x 600 mm
- Static Compatibility: Up to 7.4 kW
- Base Pad Width: 450 mm
- Max Air Gap: 175 mm
- Frequency: 85 kHz

Induction charging pad in road

2 charge pads and charge controller in car
Long Trips in >200-miles BEV

• Blacksburg VA -> Richmond VA
  – Staunton 117 miles L3
  – Richmond 108 miles L3/TS

• Blacksburg VA -> Washington DC
  – Staunton 117 miles L3
  – Washington 153 miles L3/TS (or Strasburg TS)

• Blacksburg VA -> Burlington NC 173 miles L3/TS

• Blacksburg VA -> Atlanta GA
  – Charlotte NC 173 miles L3/TS
  – Greenville SC 101 miles L3/TS
  – Atlanta GA 145 miles L3/TS
Long Trips in >200-miles BEV

• Floyd VA -> Richmond VA
  – Staunton 130 miles CM (or Lexington 96 miles CM/TS)
  – Richmond 108 miles CM/TS

• Floyd VA -> Washington DC
  – Staunton 130 miles CM (or Lexington 96 miles CM/TS)
  – Washington 153 miles CM/TS (or Strasburg TS)

• Floyd VA-> Raleigh NC 158 miles CM/TS

• Floyd VA -> Atlanta GA
  – Charlotte NC 162 miles CM/TS
  – Greenville SC 101 miles CM/TS
  – Atlanta GA 145 miles CM/TS
BEV Efficiency

• Total battery capacity is not used.
  – ~1.5-kWh left when “empty”.
  – ~1.5-kWh less than capacity when “full”.

• Typical efficiency
  – 3.5-4.5 miles/kWh depending on car, temperature and way driven (ECO mode)
  – Miles/gallon equivalent: MPGe = 0.02967 miles/kWh
    • 3.5-4.5 miles/kWh = 104-134 MPGe

• Charging cycle = from empty to full. Almost never the case.
Battery Capacity Loss with Time

• Capacity loss is ~0.035%/charging-cycle
• Average charging one-cycle/week: ~2%/year
• However, loss levels off in future years.
• Drivers need to expect less range in later years; so get larger than eventually needed.
• At ~30% loss probably battery exchange with old battery used for renewable-energy storage.
• At ~50% loss probably recycled.
• Capacity loss will reduce with new battery chemistries.
Tesla Model S Mileage vs Remaining Range
Tesla Model S Mileage vs Remaining Range

Model S Reported Battery Capacity vs Miles Driven

- 40 (139 mi)
- 60 (208 mi)
- 70D (240 mi)
- 85 (265 mi)
- 85P (265 mi)
- 85D (270 mi)
- P85D (253 mi)
- 90D (286 mi)
- P90D (268 mi)
- P100DL (315 mi)

Battery Capacity (rated miles)

Odometer (miles)
Planning for Green Housing

• All plans for green houses should including wiring for current or future charging stations. In most cases the EVs will be charged over 95% of the time in the garage or driveway/parking-lot.

• All plans for green apartment houses should include conduit in the parking lots for current or future charging stations.

• All plans for green commercial buildings should include conduit in the parking lots for current or future charging stations.
World's Top 5 Selling Plug-In Cars
All-Time (Until July 2016)
(EV Sales Blog data)

Nissan LEAF: 233,507
Tesla Model S: 132,020
Chevrolet Volt: 117,394
Mitsubishi Outlander PHEV: 109,980
Toyota Prius Plug-In: 76,374

Not available in U.S. yet.

2017 model = Prius Prime.

BEV
BEV
PHEV
PHEV
Where Are EVs Taking Off?

While California remains the country’s largest EV market in terms of cars on the road, it is no longer the fastest-growing. More states are encouraging EV driving by offering incentives such as tax credits, HOV lane access, utility rebates and special rate plans for EV charging.

Top 10 States

1. California
2. Georgia
3. Washington
4. Florida
5. Texas
6. New York
7. Michigan
8. Illinois
9. Oregon
10. New Jersey

Top 10 Metro Areas

1. Los Angeles
2. Bay Area
3. New York Metro
4. Atlanta
5. San Diego
6. Seattle
7. Chicago
8. Washington, D.C.
9. Detroit
10. Portland

Top 10 states for total EVs in operation
Top 10 states for EV growth
Top 10 metro areas for total EVs in operation
Top 10 metro areas for EV growth
Global Top-10 selling plug-in electrified cars in 2016

- BYD e6: 20,605
- BYD Qin: 21,868
- Renault Zoe: 22,009
- Tesla Model X: 25,312
- BMW i3: ~25,500
- Mitsubishi Outlander PHEV: ~27,700
- Chevrolet Volt: 28,208
- BYD Tang: 31,405
- Nissan Leaf: 49,220
- Tesla Model S: 50,931
Sales of New Energy Vehicles in China
China Association of Automobile Manufacturers (CAAM)

Inside EVs

2011: 8,159
2012: 11,375
2013: 17,642
2014: 74,763
2015: 331,092
2016: 507,000
Sales of New Energy Vehicles in China
China Association of Automobile Manufacturers (CAAM)
## Auto Manufacturer Electric Vehicle Targets

<table>
<thead>
<tr>
<th>Type</th>
<th># Vehicles (m)</th>
<th>%</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tesla</td>
<td>BEV</td>
<td>0.5</td>
<td>100%</td>
</tr>
<tr>
<td>Geely</td>
<td>EV</td>
<td>na</td>
<td>90%</td>
</tr>
<tr>
<td>JAC</td>
<td>EV</td>
<td>na</td>
<td>30%</td>
</tr>
<tr>
<td>Volkswagen</td>
<td>EV</td>
<td>2 - 3</td>
<td>20-25%</td>
</tr>
<tr>
<td>BMW</td>
<td>EV</td>
<td>~0.5</td>
<td>15-25%</td>
</tr>
<tr>
<td>Mercedes-Benz</td>
<td>EV</td>
<td>~0.6</td>
<td>15-25%</td>
</tr>
<tr>
<td>Renault-Nissan*</td>
<td>EV</td>
<td>Cumulative 1.5</td>
<td>~10-20% in</td>
</tr>
<tr>
<td>Honda</td>
<td>BEV</td>
<td>~0.5</td>
<td>15%</td>
</tr>
<tr>
<td>Toyota</td>
<td>FCV</td>
<td>0.03</td>
<td>~0.3%</td>
</tr>
</tbody>
</table>

*Cumulative Sales Target; blue numbers derived approximations

Source: Company filings, news reports, Bloomberg Intelligence
When will all cars be electric?

- **Norway**: All new cars electric by **2025**
- **Germany, India, Netherlands**: All new cars electric by **2030**
- **Britain, France**: All new cars electric by **2040**
- **China, California**: Studying all new cars electric
- **U.S. Study**: Over half of cars will be electric by **2030**.
- **Audi**: 40% of luxury cars will be electric by **2030**; BEVs will soon have 400-miles range, and eventually 500 miles.
- **VW**: 50 new BEVs from VW group by 2025
- **GM**: 20 new BEVs by 2023
- **Mercedes-Benz**: >10 new BEVs by 2022
- **Ford**: Plans a 400-miles BEV by 2020
Announcements by automakers & countries committing to electric vehicle future.

2017 marks the beginning of the gas to electric transition!
Exponential Rise of World Electric Cars (BEV & PHEV)

Doubling time = ~1.5 years.
When will all cars be electric? (BEV & PHEV)

Once autonomous cars take over, it will probably happen faster.

Doubling time = 1.5 years
When will all cars be electric?
(BEV & PHEV)

Doubling time = 0.5 years at about 2030.
Rise of U.S. Electric Cars

Figure 4: Electric Cars and Motor Vehicles (USA)
Rise of U.S. Electric Cars

Figure 8: Electric and Motor Vehicles Adoption and Prices

Average car price in the U.S. in 2015 ($33,500)

$137,530

2018, $35,000

1917, $33,030

Tesla MSRP (2012-2018)

Ford Model T Runabout (Price, $2015)

Motor Vehicles
Electric Cars Future

• Tesla already has a >300-miles car (Model S 100D) and promises a ~700-miles car (Goodbye gas car!).

• Autonomous cars fleet on fast call instead of individual ownership.

• Automatic charging in garages and parking lots.

• Number of fast-charging stations will exceed number of gas stations by 2020.

• Battery exchanges will become common and used batteries (capacity <80%) will be used for renewable-energy storage and then, when capacity <50%, will be recycled.

• BEVs will be used for power backup in emergencies
Battery/Battery Hybrid

• Tesla has patented the concept of using a lithium-ion (LI) battery (medium energy density and high power density) with a lithium-air (LA) battery (high energy density and medium power density).

• The Lithium battery would be used to provide energy during brief driving periods requiring high power (accelerating and climbing hills) and the LA battery would be used to provide energy during periods requiring low power (cruising).

• The LA battery also can recharge the LI battery.
Battery/Battery Hybrid
Graphene Supercapacitors for BEVs

- **Graphene**: carbon atoms layer one atom thick charge bilayers
- Typically high power density but **low energy density**
- Very long lifetimes (high duty cycles)
- Rapid charge and discharge
- High efficiency
- Wide range of operating temperatures
- No maintenance or toxic materials
- Fisker Emotion BEV may have a supercapitator instead of a lithium-ion battery.
Tesla plans a ‘shared autonomous fleet’ for owners to make money off their Tesla.
Autonomous Cars’ Advantages

• Much safer; will save lives and injuries
• Less traffic congestion
• Less parking space; parked stacked in tall buildings when not in service
• Electric, so 1/4\textsuperscript{th} less energy used
• Electric, so zero emissions
• More free time for passengers
• More convenient for passengers
Problems with Autonomous Vehicles

• Empty cars might increase traffic.
• The software might be too careful and slow traffic.
• Fast accelerating BEVs will clash with slow ICEs.
• Early software may have bugs.
• Viruses could infect the software.
• Displaced commercial drivers might “terrorize” autonomous vehicles.
Autonomous Vehicles Safety

Crash Rate per 100 Million Miles

- Teens are extremely crash-prone drivers
- Conventional Crash Rate ('08/'09)
- 2017 Waymo Not at Fault
- 2017 Waymo at Fault

Nissan Goal: Zero Emissions, Zero Accidents, Zero Fatalities
Transport as a Service (TaaS) Adoption
97 million ICE U.S. vehicles will be left stranded in 2030, representing the surplus that will be in the vehicle stock as consumers move to TaaS. These vehicles may eventually become entirely unsellable as used IO vehicle supply soars and demand disappears.
Autonomous Vehicles (AV)

- Audi: AV by 2017
- Tesla: AV by 2018
- Google: AV by 2018
- VW: AV by 2019
- Nissan: AV by 2020
- Ford: AV by 2020
- GM: AV by 2020
- Toyota: AV by 2020
- BMW: AV in 2021
- Worldwide: AV in 2025
- Uber: Driverless by 2030
- IEEE: 75% AV by 2040

Robots could replace 1.7 million American truckers in the next decade.
VW Self-Driving-Car (Sedric)
Smart Vision EQ
Battery-Electric Buses (BEB)

Figure 2. U.S. zero emission bus cumulative sales and awards. Source: Center for Transportation and the Environment.
Battery-Electric Buses (BEB)

Figure 3. Empirical BEB efficiency data comparison. Source: Center for Transportation and the Environment.
Battery-Electric Buses (BEB)

Figure 5. Foothill Transit’s route characteristics. Source: Prohaska et al.
Battery-Electric Buses (BEB)

Figure 7. Foothill Transit’s on-route conductive fast charger. Source: Eudy et al.
World Lithium Recycling

Recycling is <100%)

Tonnes x 10^3

Year

Verhulst Fit
1st Recycle
2nd Recycle
3rd Recycle
5th Recycle
6th Recycle
Total with Recycling
4th Recycle
In very-long term (>year 2100), must have grid-connected vehicle/trains and renewable energy.
Why Not Fuel-Cell Cars?

• They are very complicated:

  • Requires a lithium-ion battery similar to a PHEV!
  • Hydrogen fuel is not easy to obtain. Most is made from methane and water, which produces carbon dioxide with the hydrogen! Should be made by solar!
  • Better for heavy-duty vehicles, such as trucks.
Why Not Fuel-Cell Cars?

Renewable AC electricity
100 kWh

AC-DC conversion
95 kWh
(95%)

Electricity

AC via grid transmission
90 kWh
(90%)

Hydrogen

Electrolysis
71 kWh
(75%)

Compression
64 kWh
(90%)

Transport/transfer
51 kWh
(80%)

Fuel cell vehicle
23 kWh
(90%)

Liquefaction
46 kWh
(95%)

Transport/transfer
42 kWh
(90%)

Fuel cell vehicle
19 kWh
(90%)

AC-DC conversion and battery charging
77 kWh
(90%)

Electric vehicle with regenerative braking
69 kWh
(90%)
Making Hydrogen for Fuel-Cell Cars

- Steam-methane reforming:
  \[ \text{CH}_4 + \text{H}_2\text{O} (+ \text{heat}) \rightarrow \text{CO} + 3\text{H}_2 \]

- Partial oxidation of methane:
  \[ 2\text{CH}_4 + \text{O}_2 \rightarrow 2\text{CO} + 4\text{H}_2 (+ \text{heat}) \]

- **Electrolysis of water**
  \[ 2\text{H}_2\text{O} + \text{electricity} \rightarrow 4\text{H} + \text{O}_2 \]

The oxygen is released into the atmosphere.
DOE prize winning garage hydrogen creator from water and electricity. Stores 5 kg $H_2$ at 10,000 psi in a carbon-fiber tank, enough to run a fuel-cell car 312 miles.

Each kg takes 15 minutes to refuel a car.
Very Long Term Transportation

• Steady population size.
• Long-distance fast electric trains connected to a grid of renewable-energy microgrids.
• Medium-distance electric trollies connected to a renewable-energy microgrid.
• Short-distance buses inductively connected to an underground renewable powerline.
• Autonomous local BEVs for instant pickup.
• If not the above, back to horses & buggies!
References

• Wall Street Journal: Why Electric Cars Will Be Here Sooner Than You Think
• http://www.roperld.com/science/200_300mileselectriccars.htm
• http://www.roperld.com/science/BEVs_PHEVs2017.pdf (this talk)
• http://www.roperld.com/science/BEVvsICECost.htm
• US states with incentives for green cars
700-kWh 4.5-tons battery; 45-tons weight; 65-tons rock load down a mountain 20 times a day; generates 10-kWh more electricity going down than needed to go up.

World’s largest electric vehicle.