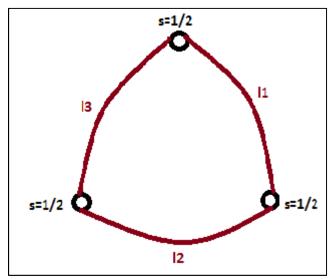
# Quark Structure of Baryons: A 3D Harmonic Oscillator Model

L. David Roper <u>mailto:roperld@vt.edu</u>

#### Introduction

Baryons (Ref. 9) are constructed of three spin-½ positive-parity quarks. There are six different quarks (Ref. 2):

- Up (u) quark: mass =  $(2.3 \pm 0.6)$  MeV, charge = 2e/3, isospin =  $\frac{1}{2}$ ,  $i_z = \frac{1}{2}$
- Down (d) quark: mass =  $(4.8 \pm 0.4)$  MeV, charge = -e/3, isospin =  $\frac{1}{2}$ ,  $i_z = -\frac{1}{2}$
- Strange (s) quark: mass =  $(95 \pm 5)$  MeV, charge = -e/3, strangeness = -1
- Charm (c) quark: mass =  $(1275 \pm 25)$  MeV, charge = 2e/3, charm = 1
- Bottom (b) quark: mass =  $(4,180 \pm 30)$  MeV, charge = -e/3, bottom = -1
- Top (t) quark: mass =  $(173,070 \pm 720)$  MeV, charge =2e/3, top = 1


The quarks that compose different classes of baryons are:

- Proton: 2 u quarks and 1 d quark (uud)
- Neutron: 2 d quarks and 1 u quark (ddu)
- Delta baryons: uuu, uud, udd, ddd quark combinations (Ref. 10)
- Lambda baryons: uds, udc, udb, udt quark combinations (Ref. 11)
- Sigma baryons: uus, uds, dds, uuc, udc, ddc, uub, udb, ddb, uut, udt, ddt (Ref. 12)
- Xi baryons: uss, dss, uss, dss, usc, dsc, usc, dsc, ucc, dcc, usb, dsb, ubb, dbb, ucb, dcb (Ref. 13)
- Omega baryons: sss, ssc, ssb, scc, scb, sbb, ccc, ccb, cbb, bbb (Ref. 14)

This study only deals with the nucleons (proton and neutron), the delta barons, the lambda baryons and the Xi baryons.

Each of the three quarks in a baryon has a different color quantum number (red, blue, green) (Ref. 2). The color forces (Ref. 5) between each pair of quarks are such that the force increases with distance between the quarks; this is called "containment" (Ref. 3); however, at high energies the color force becomes weaker, called "asymptotic freedom" (Ref. 4). The color force field carriers are eight spin-1 gluons that carry color and anticolor quantum numbers (Ref. 4).

This a rough diagram of the color forces among the three quarks in a baryon:



Of course, the 3 quarks are not well localized particles; they would be better represented by a density cloud.

A simple force that increases with distance between the quarks is the 3D harmonic oscillator (3DHO) (Ref. 1). The study reported here applies three 3D harmonic oscillators to represent the containment color forces between the 3 quarks in a nucleon.

#### The 3D Harmonic Oscillator

The energy levels for the 3D harmonic oscillator are:  $E = \hbar\omega(2n + \ell + \frac{3}{2})$  for integer n and angular momentum  $\ell$  (Ref. 1). The three quark masses (Ref. 11) are added to this equation. Thus, the energy equation for a baryon is  $E = \sum_{i=1}^{3} g_i \left(2n_i + \ell_i + \frac{3}{2}\right) + \sum_{i=1}^{3} m_i$ ; the three quark masses are  $m_1, m_2, m_3$  and the three color-force (gluon)

parameters to be varied in the fit to the resonance pole positions are  $g_1 = \hbar \omega_1$ ,  $g_2 = \hbar \omega_2$ ,  $g_3 = \hbar \omega_3$ .

They are the strengths of the three color forces binding the three quarks in the nucleon; they are not in a particular order with regard to the three quarks in the baryons. These three parameters are somewhat different for the different types of baryons.

Some general rules apply:

- The three sets of four quantum numbers  $(n, \ell, m_{\ell}, m_s)$  for the three 3D oscillators must differ from each other set in at least one of the four quantum numbers according to the Pauli Principle (Ref. 8).
- The angular-momentum quantization direction is defined by one of the three quark  $\frac{1}{2}$  spins or one of the three quark angular momenta  $\ell$ .
- The total angular momentum ( j ) must be 0 or positive.

The values of the 6 parameters  $(n_1, \ell_1, n_2, \ell_2, n_3, \ell_3)$  for the resonance-pole positions in the complex energy plane for a baryon or, when the pole positions are not known, the Breit-Wigner masses of a baryon resonance are determined to satisfy the conditions:

- $s_m = s_{1m} + s_{2m} + s_{3m} = \pm \frac{1}{2}$
- $\bullet \qquad \ell = \ell_{1m} + \ell_{2m} + \ell_{3m}$
- $j = \ell + s_m$
- Parity of a baryon is the sign of  $(-1)^{l_1}(-1)^{l_2}(-1)^{l_3}$ . Note that the sum  $\ell_1 + \ell_2 + \ell_3$  has to be an odd number for an S ( $\ell = 0$ ) state, even and >0 for a P ( $\ell = 1$ ) state, odd and >1 for a D ( $\ell = 2$ ) state, etc.
- The lowest-mass state of a baryon has the lowest possible set of the 6 parameters  $(n_1, \ell_1, n_2, \ell_2, n_3, \ell_3)$ .
- The starting values of the  $(g_1, g_2, g_3)$  parameters are determined by requiring the calculated mass of the lowest state to be calculated exactly.

#### **Fitting the Baryon Masses**

This study fits the energy equation to the pole positions of the baryon resonances in the complex energy plane or the Breit-Wigner resonance parameters. There are many sets of 3DHO parameter sets that do not correspond to any known baryon resonances. Perhaps there are unknown baryon resonances and/or unknown selection rules besides the Pauli exclusion principal that exclude some of those states.

The procedure for finding the three gluon parameters for a class of baryons is:

- 1. The lowest possible values of  $(n_1, \ell_1, n_2, \ell_2, n_3, \ell_3)$  that yield the correct  $\ell$ , j and + parity of the lowest state are selected. E.g., for the proton they are (1, 0, 0, 0, 0, 0). [Taking the lowest state as (0, 0, 0, 0, 0, 0) does not appear to give correct masses for the higher nucleon states.)
- 2. The three gluon parameters,  $(g_1, g_2, g_3)$ , are set to 1 and then varied to fit the measured mass of the lowest state.
- 3. A table is made of the  $2^6 = 64$  values 0 or 1 for the  $(n_1, \ell_1, n_2, \ell_2, n_3, \ell_3)$  along with the calculated parity and masses using the three gluon parameters determined in step 2. See the Appendix for a sample table.
- 4. The lowest calculated masses and correct parity for the first and second higher states are selected from the table of step 3 and the three gluon parameters are varied to fit the lowest three states.
- 5. The three gluon parameters determined in step 4 are used to recalculate the table of step 3. Then the closest masses with proper parity for higher states are selected.
- 6. Some higher states cannot be represented by only 0 and 1 values for the four gluon parameters. For those states guessed higher values have to be tried. (A table of all 0 or 1 or 2 values would have  $3^6 = 729$  rows.)
- 7. Then the three gluon parameters are varied again to fit the masses of all of the states.

Only baryon types are considered for which there are at least three known members with well-established relevant parameters.

### **Nucleon Resonances**

The nucleon resonances are designated by the symbols:

| Symbol               | $\ell$ | j              | Parity |
|----------------------|--------|----------------|--------|
| $S_{11}, S_{31}$     | 0      | $\frac{1}{2}$  | _      |
| $P_{11}, P_{31}$     | 1      | $\frac{1}{2}$  | +      |
| $P_{13}, P_{33}$     | 1      | $\frac{3}{2}$  | +      |
| $D_{13}, D_{33}$     | 2      | $\frac{3}{2}$  | _      |
| $D_{15}, D_{35}$     | 2      | $\frac{5}{2}$  | _      |
| $F_{15}, F_{35}$     | 3      | $\frac{5}{2}$  | +      |
| $F_{17}, F_{37}$     | 3      | $\frac{7}{2}$  | +      |
| $G_{17}, G_{37}$     | 4      | $\frac{7}{2}$  | _      |
| $G_{19}, G_{39}$     | 4      | $\frac{9}{2}$  | _      |
| $H_{19}, H_{39}$     | 5      | $\frac{9}{2}$  | +      |
| $H_{1,11}, H_{3,11}$ | 5      | $\frac{11}{2}$ | +      |

The first index specifies the isospin, either  $\frac{1}{2}$  or  $\frac{3}{2}$  without the denominator 2. The second index specifies the total angular momentum j without the denominator 2, which is listed in the  $3^{rd}$  column.  $\ell$  is the orbital angular momentum. The parity is the sign of -(-1)  $\ell$ , because the pion in the beam that produces the resonance when colliding with the nucleon has negative parity (Ref. 7).

For the isospin- $\frac{1}{2}$  resonances the + electric charge state is used, which contains 2 u quarks and 1 d quark. For the isospin- $\frac{3}{2}$  resonances the 2+ electric charge state is used, which contains 3 u quarks.

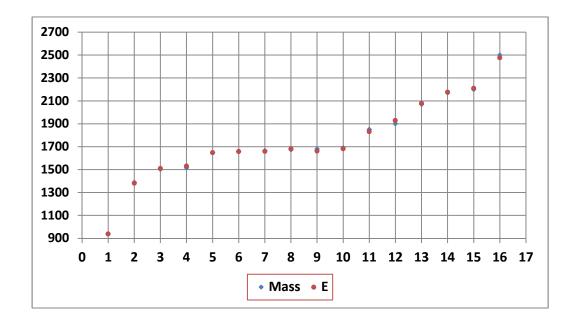
This study uses the pole positions of the nucleon resonances in the complex energy plane. There are two sources for the resonance pole positions: the SAID project at George Washington University (Ref. 15) and the Particle Data Tables (Ref. 16).

# **Fitting the Nucleon Pole Positions**

#### Fits for Isospin ½ Nucleon Resonances

These are the results for the isospin-½ nucleons. The first table lists the four parameters for the d quark and one of the u quarks; the second table lists the four parameters for the second u quark, the four parameters for the resonance and the calculated and measured mass for the nucleon (Ref. 15).

|     |        |       |        |       |       |       | Ch | arge:   | +2/3  |         | -1/3 |      |       |
|-----|--------|-------|--------|-------|-------|-------|----|---------|-------|---------|------|------|-------|
| g1: | 150.04 | g2:   | 236    | .56   | g3:   | 32.59 |    | ass:    | 2.30  | d mass: | 4.80 |      |       |
| Q1n | Q1I    | Q1ml  | Q1     |       | Q2n   | Q2I   |    | 2ml     | Q2ms  | Q3n     | Q3I  | Q3ml | Q3ms  |
| 1   | 0      | 0     | 1,     | /2    | 0     | 0     |    | 0       | 1/2   | 0       | 0    | 0    | - 1/2 |
| 0   | 0      | 0     | 1,     | /2    | 1     | 1     |    | 0       | - 1/2 | 0       | 1    | 1    | - 1/2 |
| 1   | 0      | 0     | 1,     | /2    | 1     | 0     |    | 0       | - 1/2 | 1       | 1    | 0    | 1/2   |
| 0   | 1      | 0     | - 1    | /2    | 1 1   |       |    | 1       | - 1/2 | 0       | 1    | 1    | 1/2   |
| 1   | 0      | 0     | 1,     | /2    | 1     | 1     |    | 0       |       | 0       | 0    | 0    | - 1/2 |
| 2   | 1      | 0     | 1,     | /2    | 0     | 1     |    | 1       | - 1/2 | 0       | 1    | 1    | 1/2   |
| 1   | 1      | 0     | 1,     | /2    | 1     | 0     | 0  |         | 1/2   | 1       | 1    | 1    | - 1/2 |
| 0   | 2      | 1     | - 1    | /2    | 1     | 1     |    | 1 - 1/2 |       | 0       | 1    | 1    | 1/2   |
| 0   | 1      | 0     | - 1    | /2    | 1     | 1     |    | 1 - 1/2 |       | 2       | 1    | 1    | 1/2   |
| 1   | 0      | 0     | 1,     | /2    | 1     | 1     |    | 0 - 1/2 |       | 0       | 1    | 1    | - 1/2 |
| 1   | 1      | 0     | - 1    | /2    | 1     | 1     |    | 1       | - 1/2 | 0       | 1    | 1    | 1/2   |
| 1   | 1      | 1     | 1,     | /2    | 1     | 1     | -  | 1       | 1/2   | 1       | 2    | 1    | - 1/2 |
| 1   | 2      | 1     | - 1    | /2    | 1     | 1     |    | 1       | 1/2   | 1       | 2    | 2    | - 1/2 |
| 1   | 2      | 2     | - 1    | - 1/2 |       | 1     |    | 1       | 1/2   | 2       | 3    | 2    | - 1/2 |
| 1   | 2      | 1     | - 1    | /2    | 1     | 1     |    | 2       | 1/2   | 3       | 2    | 1    | 1/2   |
| 2   | 2      | 2     | 1,     | /2    | 1     | 1     |    | 1       | 1/2   | 2       | 3    | 2    | - 1/2 |
| lm  | sm     | j     | parity | E     | Mass  | State |    | D       | iff   |         |      |      |       |
| 0   | 1/2    | 1/2   | +      | 938   | 938.3 | р     | 1  | (       | )     |         |      |      |       |
| 1   | - 1/2  | 1/2   | +      | 1380  | 1388  | P11   | 2  | 7.      | 53    |         |      |      |       |
| 0   | 1/2    | 1/2   | -      | 1509  | 1502  | S11   | 3  | 1       | 17    |         |      |      |       |
| 2   | - 1/2  | 1 1/2 | -      | 1531  | 1515  | D13   | 4  |         | .51   |         |      |      |       |
| 0   | 1/2    | 1/2   | -      | 1648  | 1648  | S11   | 5  | 0.      |       |         |      |      |       |
| 2   | 1/2    | 2 1/2 | -      | 1658  | 1656  | D15   | 6  |         | 55    |         |      |      |       |
| 1   | 1/2    | 1 1/2 | +      | 1659  | 1665  | P13   | 7  |         | 79    |         |      |      |       |
| 3   | - 1/2  | 2 1/2 | +      | 1681  | 1673  | F15   | 8  |         | 55    |         |      |      |       |
| 2   | - 1/2  | 1 1/2 | -      | 1661  | 1680  | D13   | 9  | +       | .14   |         |      |      |       |
| 1   | - 1/2  | 1/2   | +      | 1681  | 1690  | P11   | 10 |         | 45    |         |      |      |       |
| 2   | - 1/2  | 1 1/2 | -      | 1831  | 1850  | D13   | 11 |         | .40   |         |      |      |       |
| 1   | 1/2    | 1 1/2 | +      | 1928  | 1900  | P13   | 12 |         | .36   |         |      |      |       |
| 4   | - 1/2  | 3 1/2 | -      | 2078  | 2070  | G17   | 13 |         | 40    |         |      |      |       |
| 5   | - 1/2  | 4 1/2 | +      | 2176  | 2170  | H19   | 14 |         | 16    |         |      |      |       |
| 4   | 1/2    | 4 1/2 | -      | 2209  | 2200  | G19   | 15 |         | 75    |         |      |      |       |
| 5   | 1/2    | 5 1/2 | +      | 2476  | 2500  | H1,11 | 16 | 23      | .75   |         |      |      |       |


Sum

1.64

The equation for calculating the masses is  $E = \sum_{i=1}^{3} g_i \left( 2n_i + \ell_i + \frac{3}{2} \right) + 2(2.3) + 4.8$ . These calculated masses are well within the uncertainties in the measured masses.

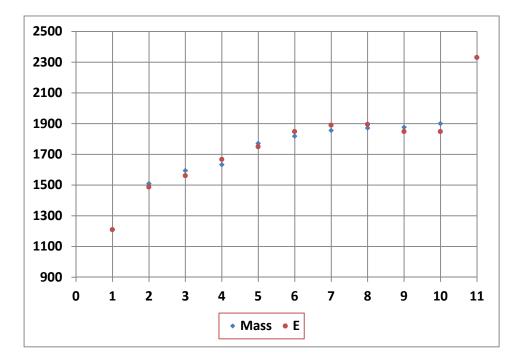
The fit was restricted to exactly produce the measured proton mass as the three parameters were varied to produce as closely as fit as possible to the remaining isospin-½ nucleon masses.

The graph below shows how closely the calculated energies correspond to the measured nucleon masses:



#### Fits for Isospin 3/2 Nucleon Resonances

These are the results for the isospin-½ nucleons. The first table lists the four parameters for the first u quark and the second u quark and the third u quark. The second table lists the four parameters for the resonance and the calculated and measured mass for the resonance (Refs. 10 & 15).


| g1: | 286.92 | g2:  | 187.85 | g3: | 81.61 | u mass: | 2.3   |     |     |      |       |
|-----|--------|------|--------|-----|-------|---------|-------|-----|-----|------|-------|
| Q1n | Q1I    | Q1ml | Q1ms   | Q2n | Q2I   | Q2ml    | Q2ms  | Q3n | Q3I | Q3ml | Q3ms  |
| 0   | 1      | 0    | 1/2    | 0   | 0     | 0       | 1/2   | 0   | 1   | 1    | - 1/2 |
| 0   | 0      | 0    | 1/2    | 1   | 1     | 0       | 1/2   | 0   | 1   | 1    | - 1/2 |
| 0   | 1      | -1   | 1/2    | 0   | 1     | 0       | 1/2   | 1   | 1   | 1    | - 1/2 |
| 0   | 1      | 1    | 1/2    | 1   | 0     | 0       | - 1/2 | 0   | 2   | 1    | - 1/2 |
| 0   | 1      | 0    | 1/2    | 1   | 0     | 0       | - 1/2 | 1   | 1   | 1    | - 1/2 |
| 1   | 0      | 0    | 1/2    | 0   | 1     | 1       | - 1/2 | 1   | 1   | 2    | - 1/2 |
| 1   | 1      | 0    | 1/2    | 0   | 1     | 1       | - 1/2 | 0   | 0   | 0    | - 1/2 |
| 0   | 0      | 0    | 1/2    | 1   | 1     | 1       | - 1/2 | 2   | 2   | 1    | 1/2   |
| 0   | 2      | 1    | - 1/2  | 0   | 1     | 1       | 1/2   | 1   | 1   | 1    | 1/2   |
| 1   | 0      | 0    | 1/2    | 0   | 1     | 0       | 1/2   | 1   | 1   | 1    | - 1/2 |
| 0   | 2      | 2    | 1/2    | 1   | 2     | 1       | 1/2   | 0   | 2   | 2    | - 1/2 |

| lm | sm    | j     | parity | E    | Mass |       |     | Diff   |
|----|-------|-------|--------|------|------|-------|-----|--------|
| 1  | 1/2   | 1 1/2 | +      | 1210 | 1210 | P33   | 1   | 0      |
| 1  | 1/2   | 1 1/2 | +      | 1487 | 1510 | P33   | 2   | 23.38  |
| 0  | 1/2   | 1/2   | -      | 1561 | 1594 | S31   | 3   | 32.93  |
| 2  | - 1/2 | 1 1/2 | -      | 1667 | 1632 | D33   | 4   | -35.31 |
| 1  | - 1/2 | 1/2   | +      | 1749 | 1771 | P31   | 5   | 22.08  |
| 3  | - 1/2 | 2 1/2 | +      | 1848 | 1818 | F35   | 6   | -29.99 |
| 1  | - 1/2 | 1/2   | +      | 1890 | 1855 | P31   | 7   | -35.07 |
| 2  | 1/2   | 2 1/2 | -      | 1895 | 1871 | D35   | 8   | -23.69 |
| 3  | 1/2   | 3 1/2 | +      | 1848 | 1876 | F37   | 9   | 28.01  |
| 1  | 1/2   | 1 1/2 | +      | 1848 | 1900 | P33   | 10  | 52.01  |
| 5  | 1/2   | 5 1/2 | +      | 2330 | 2330 | H3,11 | 11  | 0.08   |
|    | •     |       |        |      |      | •     | Sum | 34.41  |

The equation for calculating the masses is  $E = \sum_{i=1}^{3} g_i \left( 2n_i + \ell_i + \frac{3}{2} \right) + 3(2.3)$ . These calculated masses are well within the uncertainties in the measured masses.

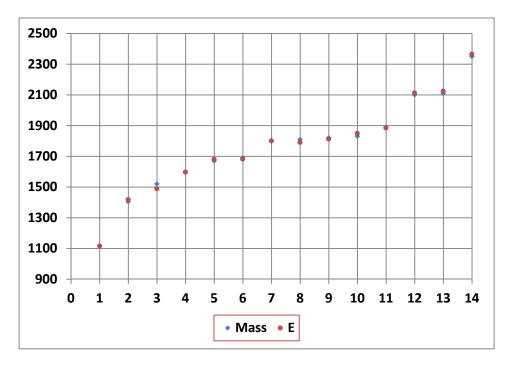
The fit was required to exactly produce the measured  $\Delta_{33}$  (P<sub>33</sub>) mass as the three parameters were varied to produce a fit as closely as possible to the remaining isospin-3/2 nucleon masses.

The graph below shows how closely the calculated energies correspond to the measured nucleon masses:



#### Fits for Lambda (Λ) Baryons

These are the results for the Lambda ( $\Lambda$ ) baryons. The first table lists the four parameters for the first u quark and the second d quark and the third s quark. The second table lists the four parameters for the baryon and the calculated and measured mass for the baryon (Ref. 11).


| Carce | naicu a | ina mca | surcu illa   | iss for the | oar you ( | 101. 11 <i>)</i> . |         |        |         |      |         |       |
|-------|---------|---------|--------------|-------------|-----------|--------------------|---------|--------|---------|------|---------|-------|
| g1    | : :     | 155.63  | g <b>2</b> : | 204.50      | g3:       | 108.08             | u mass: | 2.30   | d mass: | 4.80 | s mass: | 95    |
| Q1    | n       | Q1I     | Q1ml         | Q1ms        | Q2n       | Q2I                | Q2ml    | Q2ms   | Q3n     | Q3I  | Q3ml    | Q3ms  |
| 1     |         | 0       | 0            | 1/2         | 0         | 0                  | 0       | 1/2    | 0       | 0    | 0       | - 1/2 |
| 0     |         | 0       | 0            | 1/2         | 1         | 1                  | 0       | 1/2    | 0       | 0    | 0       | - 1/2 |
| 0     |         | 1       | 0            | 1/2         | 0         | 1                  | 1       | - 1/2  | 1       | 1    | 1       | - 1/2 |
| 1     |         | 1       | 0            | - 1/2       | 0         | 0                  | 0       | - 1/2  | 1       | 1    | 1       | 1/2   |
| 1     |         | 1       | 0            | 1/2         | 1         | 0                  | 0       | 1/2    | 0       | 0    | 0       | - 1/2 |
| 0     |         | 1       | 0            | 1/2         | 1         | 1                  | 1       | - 1/2  | 0       | 1    | 1       | - 1/2 |
| 1     |         | 1       | 0            | 1/2         | 0         | 1                  | 0       | 1/2    | 1       | 1    | 0       | - 1/2 |
| 0     |         | 1       | 0            | - 1/2       | 1         | 1                  | 1       | - 1/2  | 1       | 0    | 0       | 1/2   |
| 0     |         | 1       | 1            | - 1/2       | 0         | 1                  | 1       | 1/2    | 2       | 2    | 1       | - 1/2 |
| 1     |         | 0       | 0            | 1/2         | 1         | 0                  | 0       | 1/2    | 0       | 3    | 2       | - 1/2 |
| 1     |         | 1       | 0            | - 1/2       | 1         | 1                  | 1       | 1/2    | 0       | 0    | 0       | 1/2   |
| 1     |         | 1       | 1            | 1/2         | 0         | 2                  | 1       | - 1/2  | 1       | 2    | 2       | - 1/2 |
| 1     |         | 1       | 1            | - 1/2       | 0         | 1                  | 1       | 1/2    | 2       | 2    | 1       | - 1/2 |
| 1     |         | 2       | 2            | - 1/2       | 1         | 1                  | 1       | 1/2    | 0       | 3    | 2       | 1/2   |
| lm    | sm      | j       | parity       | E           | Mass      | State              |         | Diff   |         |      |         |       |
| 0     | 1/2     | 1/2     | +            | 1116        | 1116      | Lambda             | 1       | 0      |         |      |         |       |
| 0     | 1/2     | 1/2     | -            | 1418        | 1405      | S01                | 2       | -12.84 |         |      |         |       |
| 2     | - 1/2   | 1 1/2   | -            | 1489        | 1519.5    | D03                | 3       | 30.69  |         |      |         |       |
| 1     | - 1/2   | 1/2     | +            | 1596        | 1600      | P01                | 4       | 4.43   |         |      |         |       |
| 0     | 1/2     | 1/2     | -            | 1680        | 1670      | S01                | 5       | -10.32 |         |      |         |       |
| 2     | - 1/2   | 1 1/2   | -            | 1682        | 1690      | D03                | 6       | 8.35   |         |      |         |       |
| 0     | 1/2     | 1/2     | -            | 1800        | 1800      | S01                | 7       | -0.07  |         |      |         |       |
| 1     | - 1/2   | 1/2     | +            | 1790        | 1810      | P01                | 8       | 20.26  |         |      |         |       |
| 3     | - 1/2   | 2 1/2   | +            | 1813        | 1820      | F05                | 9       | 6.93   |         |      |         |       |
| 2     | 1/2     | 2 1/2   | -            | 1849        | 1830      | D05                | 10      | -18.94 |         |      |         |       |
| 1     | 1/2     | 1 1/2   | +            | 1885        | 1890      | P03                | 11      | 5.18   |         |      |         |       |
| 4     | - 1/2   | 3 1/2   | -            | 2113        | 2100      | G07                | 12      | -12.66 |         |      |         |       |
| 3     | - 1/2   | 2 1/2   | +            | 2124        | 2110      | F05                | 13      | -14.32 |         |      |         |       |
| 5     | 1/2     | 5 1/2   | +            | 2365        | 2350      | H1,11              | 14      | -14.71 |         |      |         |       |
|       |         |         |              |             |           |                    |         |        |         |      |         |       |

The equation for calculating the masses is  $E = \sum_{i=1}^{3} g_i \left( 2n_i + \ell_i + \frac{3}{2} \right) + 2.3 + 4.8 + 95$ . These calculated masses are

well within the uncertainties in the measured masses.

The fit was required to exactly produce the measured  $\Lambda$  mass as the three parameters were varied to produce a fit as closely as possible to the remaining  $\Lambda$ -baryon masses.

The graph below shows how closely the calculated energies correspond to the measured  $\Lambda$ -baryon masses:



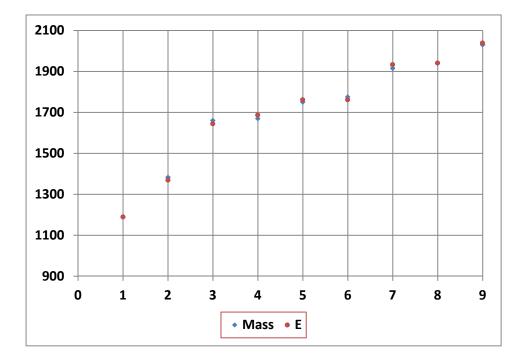
#### Fits for Sigma ( $\Sigma$ ) Baryons

These are the results for the Sigma ( $\Sigma$ ) baryons. The first table lists the four parameters for the first u quark and the second u quark and the third s quark. The second table lists the four parameters for the baryon and the calculated and measured mass for the baryon (Ref. 12).

| g1: | 17    | 1.71  | g2:    | 208  | .81       | g3:   | 117.04 | u mass: | 2.30  | s mass: | 95  |      |       |
|-----|-------|-------|--------|------|-----------|-------|--------|---------|-------|---------|-----|------|-------|
| Q1r | n (   | Q1I   | Q1ml   | Q1r  | ns        | Q2n   | Q2l    | Q2ml    | Q2ms  | Q3n     | Q3I | Q3ml | Q3ms  |
| 1   |       | 0     | 0      | 1/   | <b>'2</b> | 0     | 0      | 0       | 1/2   | 0       | 0   | 0    | - 1/2 |
| 0   |       | 1     | 0      | 1/   | <b>'2</b> | 0     | 0      | 0       | 1/2   | 1       | 1   | 1    | - 1/2 |
| 0   |       | 1     | 0      | 1/   | <b>'2</b> | 1     | 1      | 1       | - 1/2 | 0       | 0   | 0    | - 1/2 |
| 1   |       | 1     | 1      | 1/   | <b>'2</b> | 0     | 1      | 1       | - 1/2 | 0       | 1   | 0    | - 1/2 |
| 0   |       | 1     | 0      | 1/   | <b>'2</b> | 1     | 1      | 0       | 1/2   | 0       | 1   | 0    | - 1/2 |
| 0   |       | 1     | 0      | 1/   | <b>'2</b> | 1     | 1      | 1       | - 1/2 | 0       | 1   | 1    | 1/2   |
| 0   |       | 2     | 1      | 1/   | <b>'2</b> | 1     | 1      | 1       | - 1/2 | 0       | 1   | 1    | - 1/2 |
| 0   |       | 0     | 0      | - 1, | /2        | 1     | 1      | 1       | - 1/2 | 1       | 2   | 1    | 1/2   |
| 1   |       | 1     | 1      | - 1, | /2        | 0     | 1      | 1       | - 1/2 | 1       | 2   | 1    | 1/2   |
| lm  | sm    | j     | parity | E    | Mass      | State | е      | Diff    |       |         |     |      |       |
| 0   | 1/2   | 1/2   | +      | 1189 | 1189      | Σ+    | . 1    | 0       |       |         |     |      |       |
| 1   | 1/2   | 1 1/2 | +      | 1369 | 1383      | P13   | 2      | 14.03   |       |         |     |      |       |
| 1   | - 1/2 | 1/2   | +      | 1644 | 1660      | P11   | . 3    | 15.90   |       |         |     |      |       |
| 2   | - 1/2 | 1 1/2 | -      | 1687 | 1670      | D13   | 4      | -16.93  |       |         |     |      |       |
| 0   | 1/2   | 1/2   | -      | 1761 | 1750      | S11   | 5      | -11.14  |       |         |     |      |       |
| 2   | 1/2   | 2 1/2 | -      | 1761 | 1775      | D15   | 6      | 13.86   |       |         |     |      |       |
| 3   | - 1/2 | 2 1/2 | +      | 1933 | 1915      | F15   | 7      | -17.85  |       |         |     |      |       |
| 2   | - 1/2 | 1 1/2 | _      | 1941 | 1940      | D13   | 8      | -0.53   |       |         |     |      |       |

9 -8.04 Sum: -10.70

The equation for calculating the masses is  $E = \sum_{i=1}^{3} g_i \left( 2n_i + \ell_i + \frac{3}{2} \right) + 2(2.3) + 95$ . These calculated masses are well within the uncertainties in the measured masses.


2038

2030

F17

The fit was required to exactly produce the measured  $\Sigma$  mass as the three parameters were varied to produce a fit as closely as possible to the remaining  $\Sigma$ -baryon masses.

The graph below shows how closely the calculated energies correspond to the measured  $\Sigma$  -baryon masses:



# Fits for Xi (E) Baryons

These are the results for the Xi ( $\Xi$ ) baryons. The first table lists the four parameters for the first u quark and the second s quark and the third s quark. The second table lists the four parameters for the baryon and the calculated and measured mass for the baryon (Ref. 13).

| g1: | 189.74 | g2:  | 171.45 | g3: | 137.11 | d mass: | 4.80  | s mass: | 95  |      |       |
|-----|--------|------|--------|-----|--------|---------|-------|---------|-----|------|-------|
| Q1n | Q1I    | Q1ml | Q1ms   | Q2n | Q2I    | Q2ml    | Q2ms  | Q3n     | Q3I | Q3ml | Q3ms  |
| 1   | 0      | 0    | 1/2    | 0   | 0      | 0       | 1/2   | 0       | 0   | 0    | - 1/2 |
| 0   | 0      | 0    | 1/2    | 0   | 1      | 1       | 1/2   | 1       | 1   | 0    | - 1/2 |
| 1   | 1      | 0    | 1/2    | 0   | 1      | 1       | - 1/2 | 0       | 1   | 1    | - 1/2 |

| lm | sm    | j     | parity | Е    | Mass | State |      | Diff |
|----|-------|-------|--------|------|------|-------|------|------|
| 0  | 1/2   | 1/2   | +      | 1322 | 1322 | Xi-   | 1    | 0    |
| 1  | 1/2   | 1 1/2 | +      | 1525 | 1525 | P13   | 2    | 0.00 |
| 2  | - 1/2 | 1 1/2 | -      | 1820 | 1820 | D13   | 3    | 0.00 |
|    |       |       |        |      |      |       | Sum: | 0.00 |

The equation for calculating the masses is  $E = \sum_{i=1}^{3} g_i \left( 2n_i + \ell_i + \frac{3}{2} \right) + 2.3 + 2(95)$ . These calculated masses are exact because there are three parameters to fit three data.

# Fits for Lambda-Charm ( $\Lambda_c$ ) Baryons

These are the results for the Lambda-Charm ( $\Lambda_c$ ) baryons. The first table lists the four parameters for the first u quark and the second d quark and the third c quark. The second table lists the four parameters for the baryon and the calculated and measured mass for the baryon (Ref. 11).

| g1: | 156.9 | 94 g2 | 2:    | 206.31 | g3:  | 97.06      | u mass: | 2.30  | d mass: | 4.80 | c mass: | 1275  |
|-----|-------|-------|-------|--------|------|------------|---------|-------|---------|------|---------|-------|
| Q1n | Q1    | Q1    | ml    | Q1ms   | Q2n  | Q2I        | Q2ml    | Q2ms  | Q3n     | Q3I  | Q3ml    | Q3ms  |
| 1   | 0     | (     | )     | 1/2    | 0    | 0          | 0       | 1/2   | 0       | 0    | 0       | - 1/2 |
| 0   | 0     | (     | )     | 1/2    | 1    | 1          | 0       | 1/2   | 0       | 0    | 0       | - 1/2 |
| 0   | 1     | (     | )     | 1/2    | 0    | 1          | 1       | - 1/2 | 1       | 1    | 1       | - 1/2 |
| 0   | 0     | C     | )     | 1/2    | 1    | 1          | 1       | - 1/2 | 0       | 3    | 2       | - 1/2 |
| lm  | sm    | j     | parit | у Е    | Mass | Stat       | e       |       | Diff    |      |         |       |
| 0   | 1/2   | 1/2   | +     | 2286   | 228  | 6 Lam      | bdaC    | 1     | 0       |      |         |       |
| 0   | 1/2   | 1/2   | -     | 2592   | 259  | <b>2</b> S | 01      | 2     | 0.74    |      |         |       |
| 2   | - 1/2 | 1 1/2 | -     | 2627   | 262  | <b>8</b> D | 03      | 3     | 1.11    |      |         |       |
| 3   | - 1/2 | 2 1/2 | +     | 2883   | 288  | 2 F        | 05      | 4     | -1.15   |      |         |       |
|     |       |       |       |        |      |            |         | Sum:  | 0.70    |      |         |       |

## Fits for Xi-Charm $(\Xi_c)$ Baryons

These are the results for the Xi ( $\Xi_c$ ) baryons. The first table lists the four parameters for the first u quark and the second u quark and the third c quark. The second table lists the four parameters for the baryon and the calculated and measured mass for the baryon (Ref. 13).

|    |       |       |           |         |      |       |       | Charge: | 2/3   |         | -1/3  |         | 2/3   |
|----|-------|-------|-----------|---------|------|-------|-------|---------|-------|---------|-------|---------|-------|
| g1 | l: 1  | 91.27 | g2:       | 143.23  | g3:  | 139.  | 13    | d mass: | 4.80  | s mass: | 95    | c mass: | 1275  |
| Q1 | ln    | Q1I   | Q1ml      | Q1ms    | Q2n  | Q2    | 1     | Q2ml    | Q2ms  | Q3n     | Q3I   | Q3ml    | Q3ms  |
| 1  |       | 0     | 0         | 1/2     | 0    | 0     |       | 0       | 1/2   | 0       | 0     | 0       | - 1/2 |
| 0  | )     | 0     | 0         | 1/2     | 0    | 1     |       | 1       | 1/2   | 1       | 1     | 0       | - 1/2 |
| 0  | )     | 0     | 0 1/2 1 0 |         |      | 0     | - 1/2 | 1       | 1     | 0       | - 1/2 |         |       |
| 0  | )     | 1     | 0         | 1/2     | 0    | 1     |       | 1       | - 1/2 | 1       | 1     | 1       | - 1/2 |
| lm | sm    | j     | parity    | E       | Mass | State |       | Diff    |       |         |       |         |       |
| 0  | 1/2   | 1/2   | +         | 2467.8  | 2468 | XiC-  | 1     | 0       |       |         |       |         |       |
| 1  | 1/2   | 1 1/2 | +         | 2645.88 | 2646 | P13   | 2     | 0.02    |       |         |       |         |       |
| 0  | - 1/2 | - 1/2 | -         | 2789.1  | 2789 | S11   | 3     | 0.00    |       |         |       |         |       |
| 2  | - 1/2 | 1 1/2 | -         | 2837.15 | 2817 | D13   | 3     | -20.55  |       |         |       |         |       |
|    |       |       |           |         |      |       | Sum   | . 20 52 |       |         |       |         |       |

The equation for calculating the masses is  $E = \sum_{i=1}^{3} g_i \left( 2n_i + \ell_i + \frac{3}{2} \right) + 2(2.3) + 1275.$ 

# Fits for Lambda-Bottom ( $\Lambda_b$ ) Baryons

These are the results for the Lambda-Charm ( $\Lambda_b$ ) baryons. The first table lists the four parameters for the first u quark and the second d quark and the third b quark. The second table lists the four parameters for the baryon and the calculated and measured mass for the baryon (Ref. 11).

|     |       |       |              |      |      |              | •     |   | ,       |       |         |      |         |       |
|-----|-------|-------|--------------|------|------|--------------|-------|---|---------|-------|---------|------|---------|-------|
|     |       |       |              |      |      |              |       |   | Charge: | +2/3  |         | -1/3 |         | +2/3  |
| g1: | 253.  | 84    | g <b>2</b> : | 266  | 5.76 | g3:          | 95.8  | 3 | u mass: | 2.30  | d mass: | 4.80 | c mass: | 4180  |
| Q1n | Q1    | .I    | Q1ml         | Q1   | .ms  | Q2n          | Q2    | I | Q2ml    | Q2ms  | Q3n     | Q3I  | Q3ml    | Q3ms  |
| 1   | 0     |       | 0            | 1    | /2   | 0            | 0     |   | 0       | 1/2   | 0       | 0    | 0       | - 1/2 |
| 0   | 0     |       | 0            | 1    | /2   | 1            | 1 1   |   | 0       | 1/2   | 0       | 0    | 0       | - 1/2 |
| 0   | 1     |       | 0            | 1    | /2   | 0            | 0 1   |   | 1       | - 1/2 | 1       | 1    | 1       | - 1/2 |
| lm  | sm    | j     | parity       | E    | Mas  | s Sta        | te    |   | Diff    |       |         |      |         |       |
| 0   | 1/2   | 1/2   | +            | 5619 | 561  | <b>9</b> Lar | nbdaB | 1 | 0       |       |         |      |         |       |
| 0   | 1/2   | 1/2   | -            | 5912 | 591  | 2            | S01   | 2 | 0.00    |       |         |      |         |       |
| 2   | - 1/2 | 1 1/2 | -            | 5920 | 592  | 0            | D03   | 3 | 0.00    |       |         |      |         |       |

The equation for calculating the masses is  $E = \sum_{i=1}^{3} g_i \left( 2n_i + \ell_i + \frac{3}{2} \right) + 2.3 + 4.8 + 4180$ . These calculated masses are exact because there are three parameters to fit three data.

#### **Conclusions**

This study shows that the baryon resonances can be accurately matched by quantum states of three 3D harmonic oscillators (3DHO) representing the three color forces that bind the three quarks that compose the baryon resonances. There are many 3DHO states that give masses different than known baryon resonances.

Previous attempts to use the 3DHO model for baryons (Ref. 20) used only one 3DHO for all three quarks. It did not work because the S11 state had a lower mass than the P11 (Roper) state, with is wrong.

Using three separate 3DHOs for the three quark interactions in this analysis fixes that problem. Here are the quantum numbers and calculated parameters for the first three nucleon states:

| Q1n | Q1I   | Q1ml | Q1ms   | Q2n  | Q2I   | Q2ml  | Q2ms  | Q3n | Q3I | Q3ml | Q3ms  |
|-----|-------|------|--------|------|-------|-------|-------|-----|-----|------|-------|
| 1   | 0     | 0    | 1/2    | 0    | 0     | 0     | 1/2   | 0   | 0   | 0    | - 1/2 |
| 0   | 0     | 0    | 1/2    | 1    | 1     | 0     | - 1/2 | 0   | 1   | 1    | - 1/2 |
| 1   | 0     | 0    | 1/2    | 1    | 0     | 0     | - 1/2 | 1   | 1   | 0    | 1/2   |
| lm  | sm    | j    | parity | E    | Mass  | State |       |     |     |      |       |
| 0   | 1/2   | 1/2  | +      | 938  | 938.3 | р     |       |     |     |      |       |
| 1   | - 1/2 | 1/2  | +      | 1380 | 1388  | P11   |       |     |     |      |       |
| 0   | 1/2   | 1/2  | -      | 1509 | 1502  | S11   |       |     |     |      |       |

The 3DHO model is non-relativistic, but it appears to work quite well. There is a well-known lowest-order relativistic correction for the 3DHO (Ref. 19), but it does not seem to be necessary for calculating the nucleon masses using the 3DHO model.

The three  $g_1 = \hbar \omega_1$ ,  $g_2 = \hbar \omega_2$ ,  $g_3 = \hbar \omega_3$  parameters are summarized for the eight baryon types in this study:

| $\sim$ | lar Earce | parameters   |
|--------|-----------|--------------|
| CO     | IOI-FOICE | : Darameters |

| G1:    | G2:                                                                | G3:                                                                                                                 |  |
|--------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--|
| 150.04 | 236.56                                                             | 32.59                                                                                                               |  |
| 286.92 | 187.85                                                             | 81.61                                                                                                               |  |
| 155.63 | 204.50                                                             | 108.08                                                                                                              |  |
| 171.71 | 208.81                                                             | 117.04                                                                                                              |  |
| 189.74 | 171.45                                                             | 137.11                                                                                                              |  |
| 156.94 | 206.31                                                             | 97.06                                                                                                               |  |
| 191.27 | 143.23                                                             | 139.13                                                                                                              |  |
| 253.84 | 266.76                                                             | 95.83                                                                                                               |  |
|        | 150.04<br>286.92<br>155.63<br>171.71<br>189.74<br>156.94<br>191.27 | 150.04 236.56<br>286.92 187.85<br>155.63 204.50<br>171.71 208.81<br>189.74 171.45<br>156.94 206.31<br>191.27 143.23 |  |

They are not in a particular order with regard to the three quarks in the baryons.

The unsolved aspects of this analysis are:

- Why there are many states that are not represented in the data?
- Why do the masses come out close to measured values for a nonrelativistic 3DHO model?

#### References

- 1. <a href="http://en.wikipedia.org/wiki/Quantum\_harmonic\_oscillator#Example:\_3D\_isotropic\_harmonic\_oscillator">http://en.wikipedia.org/wiki/Quantum\_harmonic\_oscillator#Example:\_3D\_isotropic\_harmonic\_oscillator</a>
- 2. http://en.wikipedia.org/wiki/Quark
- 3. <a href="http://en.wikipedia.org/wiki/Quark\_confinement">http://en.wikipedia.org/wiki/Quark\_confinement</a>
- 4. http://en.wikipedia.org/wiki/Gluon
- 5. The Color Force
- 6. http://en.wikipedia.org/wiki/Asymptotic\_freedom
- 7. <a href="http://en.wikipedia.org/wiki/Pion">http://en.wikipedia.org/wiki/Pion</a>
- 8. <a href="http://en.wikipedia.org/wiki/Pauli\_principle">http://en.wikipedia.org/wiki/Pauli\_principle</a>
- 9. http://en.wikipedia.org/wiki/Baryons
- 10. http://en.wikipedia.org/wiki/Delta\_baryon
- 11. http://en.wikipedia.org/wiki/Lambda\_baryon
- 12. http://en.wikipedia.org/wiki/Sigma\_baryon
- 13. http://en.wikipedia.org/wiki/Xi\_baryon
- 14. <a href="http://en.wikipedia.org/wiki/Omega\_baryon">http://en.wikipedia.org/wiki/Omega\_baryon</a>
- 15. <a href="http://gwdac.phys.gwu.edu/analysis/pin\_analysis.html">http://gwdac.phys.gwu.edu/analysis/pin\_analysis.html</a>
- 16. http://pdg.lbl.gov/2013/tables/rpp2013-sum-baryons.pdf
- 17. http://pdg.lbl.gov/2013/tables/rpp2013-sum-quarks.pdf
- 18. http://www.phy.duke.edu/~kolena/modern/hansen.html
- 19. http://physicspages.com/2013/08/15/harmonic-oscillator-relativistic-correction/
- 20. On the nature of the Roper resonance

27 January 2014

http://arts.bev.net/roperldavid/

# Appendix: Table for sixty-four 0 and 1 values for Nucleon 3DHO Parameters

| u mass: | 2.30   | d mass: | 4.80   |     |       | _      |       |        |    |
|---------|--------|---------|--------|-----|-------|--------|-------|--------|----|
| g1:     | 150.04 | g2:     | 236.56 | g3: | 32.59 |        |       | ·      |    |
| dn      | dl     | u1n     | u1l    | u2n | u2l   | parity | E     |        |    |
| 0       | 0      | 0       | 0      | 0   | 0     | +      | 638.2 |        | 1  |
| 0       | 0      | 0       | 0      | 0   | 1     | -      | 670.8 |        | 2  |
| 0       | 0      | 0       | 0      | 1   | 0     | +      | 703.4 |        | 3  |
| 0       | 0      | 0       | 0      | 1   | 1     | -      | 736   |        | 4  |
| 0       | 1      | 0       | 0      | 0   | 0     | -      | 788.2 |        | 5  |
| 0       | 1      | 0       | 0      | 0   | 1     | +      | 820.8 |        | 6  |
| 0       | 1      | 0       | 0      | 1   | 0     | -      | 853.4 |        | 7  |
| 0       | 0      | 0       | 1      | 0   | 0     | -      | 874.8 |        | 8  |
| 0       | 1      | 0       | 0      | 1   | 1     | +      | 886   |        | 9  |
| 0       | 0      | 0       | 1      | 0   | 1     | +      | 907.3 |        | 10 |
| 1       | 0      | 0       | 0      | 0   | 0     | +      | 938.3 | proton | 11 |
| 0       | 0      | 0       | 1      | 1   | 0     | -      | 939.9 |        | 12 |
| 1       | 0      | 0       | 0      | 0   | 1     | -      | 970.9 |        | 13 |
| 0       | 0      | 0       | 1      | 1   | 1     | +      | 972.5 |        | 14 |
| 1       | 0      | 0       | 0      | 1   | 0     | +      | 1003  |        | 15 |
| 0       | 1      | 0       | 1      | 0   | 0     | +      | 1025  |        | 16 |
| 1       | 0      | 0       | 0      | 1   | 1     | -      | 1036  |        | 17 |
| 0       | 1      | 0       | 1      | 0   | 1     | -      | 1057  |        | 18 |
| 1       | 1      | 0       | 0      | 0   | 0     | -      | 1088  |        | 19 |
| 0       | 1      | 0       | 1      | 1   | 0     | +      | 1090  |        | 20 |
| 0       | 0      | 1       | 0      | 0   | 0     | +      | 1111  |        | 21 |
| 1       | 1      | 0       | 0      | 0   | 1     | +      | 1121  |        | 22 |
| 0       | 1      | 0       | 1      | 1   | 1     | -      | 1123  |        | 23 |
| 0       | 0      | 1       | 0      | 0   | 1     | -      | 1144  |        | 24 |
| 1       | 1      | 0       | 0      | 1   | 0     | -      | 1153  |        | 25 |
| 1       | 0      | 0       | 1      | 0   | 0     | -      | 1175  |        | 26 |
| 0       | 0      | 1       | 0      | 1   | 0     | +      | 1176  |        | 27 |
| 1       | 1      | 0       | 0      | 1   | 1     | +      | 1186  |        | 28 |
| 1       | 0      | 0       | 1      | 0   | 1     | +      | 1207  |        | 29 |
| 0       | 0      | 1       | 0      | 1   | 1     | -      | 1209  |        | 30 |
| 1       | 0      | 0       | 1      | 1   | 0     | -      | 1240  |        | 31 |
| 0       | 1      | 1       | 0      | 0   | 0     | -      | 1261  |        | 32 |
| 1       | 0      | 0       | 1      | 1   | 1     | +      | 1273  |        | 33 |
| 0       | 1      | 1       | 0      | 0   | 1     | +      | 1294  |        | 34 |
| 1       | 1      | 0       | 1      | 0   | 0     | +      | 1325  |        | 35 |
| 0       | 1      | 1       | 0      | 1   | 0     | -      | 1327  |        | 36 |
| 0       | 0      | 1       | 1      | 0   | 0     | -      | 1348  |        | 37 |
| 1       | 1      | 0       | 1      | 0   | 1     | -      | 1357  |        | 38 |
| 0       | 1      | 1       | 0      | 1   | 1     | +      | 1359  |        | 39 |

| _ |   |   |   | _ |   | _ |      |     |           |
|---|---|---|---|---|---|---|------|-----|-----------|
| 0 | 0 | 1 | 1 | 0 | 1 | + | 1380 | P11 | 40        |
| 1 | 1 | 0 | 1 | 1 | 0 | + | 1390 |     | 41        |
| 1 | 0 | 1 | 0 | 0 | 0 | + | 1411 |     | 42        |
| 0 | 0 | 1 | 1 | 1 | 0 | - | 1413 |     | 43        |
| 1 | 1 | 0 | 1 | 1 | 1 | - | 1423 |     | 44        |
| 1 | 0 | 1 | 0 | 0 | 1 | - | 1444 |     | 45        |
| 0 | 0 | 1 | 1 | 1 | 1 | + | 1446 |     | 46        |
| 1 | 0 | 1 | 0 | 1 | 0 | + | 1477 |     | 47        |
| 0 | 1 | 1 | 1 | 0 | 0 | + | 1498 |     | 48        |
| 1 | 0 | 1 | 0 | 1 | 1 | - | 1509 | S11 | 49        |
| 0 | 1 | 1 | 1 | 0 | 1 | - | 1531 | D13 | 50        |
| 1 | 1 | 1 | 0 | 0 | 0 | - | 1561 |     | 51        |
| 0 | 1 | 1 | 1 | 1 | 0 | + | 1563 |     | 52        |
| 1 | 1 | 1 | 0 | 0 | 1 | + | 1594 |     | 53        |
| 0 | 1 | 1 | 1 | 1 | 1 | - | 1596 |     | 54        |
| 1 | 1 | 1 | 0 | 1 | 0 | - | 1627 |     | 55        |
| 1 | 0 | 1 | 1 | 0 | 0 | - | 1648 | S11 | 56        |
| 1 | 1 | 1 | 0 | 1 | 1 | + | 1659 | P13 | <b>57</b> |
| 1 | 0 | 1 | 1 | 0 | 1 | + | 1681 | P11 | 58        |
| 1 | 0 | 1 | 1 | 1 | 0 | - | 1713 |     | 59        |
| 1 | 0 | 1 | 1 | 1 | 1 | + | 1746 |     | 60        |
| 1 | 1 | 1 | 1 | 0 | 0 | + | 1798 |     | 61        |
| 1 | 1 | 1 | 1 | 0 | 1 | - | 1831 | D13 | 62        |
| 1 | 1 | 1 | 1 | 1 | 0 | + | 1863 |     | 63        |
| 1 | 1 | 1 | 1 | 1 | 1 | • | 1896 |     | 64        |