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We present here an outline of a theory of depletion of nonrenewable resources.   We start with two basic 

irrefutable facts: 

 

1. The earth (or any portion of the earth) is a finite source of any mineral. 

2. As a mineral is extracted from the earth it becomes steadily more difficult to extract the remainder.  By 

“more difficult” is meant that more materials and energy are required and more environmental degradation 

occurs. 

 

These two facts define complicated nonlinear interactions among all minerals: The increasing scarcity with time 

of one mineral (say crude oil) makes it more difficult to obtain another mineral (say iron ore) which may be 

crucially important in the extraction of the first mineral.  This is only one of scores of nonlinear interactions that 

are simultaneously at work. 

 

Common sense tells one the kind of long-term “average” production-rate behavior to expect for any mineral.  

There are components of both technology and sociology that interplay in the behavior. 

 

1. In the earliest stage the mineral is relatively readily available, but the technology for its extraction and 

society’s need for it are undeveloped.  Therefore, the production rate will increase slowly at first.  However, 

as the extracted mineral enters into the mainstream of the society its presence will generate more need for it 

and thereby generate more advanced extraction technology.  Thus, it is reasonable to assume that the 

production rate at earliest times will be some increasing function of the amount already extracted at that 

time.  Let Q∞=amount that will be eventually extracted and Q(t)=amount left to be extracted at time t; then 

the production rate P(t)=-dQ/dt at time t is some function of [Q∞-Q(t)].  Since any smooth function can be 

expanded as a power series in an independent variable, at the very earliest times P(t) should be proportional 

to some power of  [Q∞-Q(t)].  The simplest assumption and one that often works in other similar situations 

is that P(t)∝[Q∞-Q(t)] at the earliest times. However, we shall consider more complicated possibilities. 

2. At the latest stage when the mineral is almost completely depleted, the principal limitation on the 

production rate P will be the amount left to be extracted Q(t) at that time.  Again, at the very latest times P 

should be proportional to some power of Q(t).  The simplest assumption and one that often works in other 

similar situations is that P(t)∝ Q(t) at the latest times.  However, we shall consider more complicated 

possibilities. 

3. At intermediate times there are no rational arguments that we can muster for any particular functional form 

for P(t) as a function of Q(t).  So we shall consider several possibilities and let the production data for a 

given mineral “choose” which of the possibilities works best by performing least-squares fits to the data.  

Some obvious statements can be made, however: After rising slowly at earliest times, the production rate 

should begin to accelerate, then later (at an inflection point) decelerate until the production rate peaks at 

some time.  Then the rate will begin to decline in a similar, but not necessarily symmetrical, fashion.  

Finally, P(t) will asymptotically approach zero.  The simplest assumption that one could make which yields 

this kind of behavior is that P(t) is strictly proportional to the first power of both [Q∞-Q(t)] and Q(t) at all 

times; i.e.,   ( )P t
dQ

dt
kQ Q Q Q( ) / ,= − = −∞ ∞

                Eq. (1)                                                                                  

where k is a rate constant that is a measure of the usefulness of the mineral and the long-term economic 
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conditions of the society.  (One can define a time constant τ ≡ 1
k .)  We discuss this equation, as well as 

more complicated cases, below. 

 

Of course, in reality for a particular mineral the long-term average behavior described above will not precisely 

describe the production-rate behavior.  There are short-term social phenomena, such as wars and economic 

depressions, that can and sometimes do cause rather large fluctuations in the production rates.  (A detailed study 

of correlations of these mineral-production fluctuations with specific social phenomena would be interesting.  

We do not attempt it here.)  These short-term fluctuations exhibit behavior similar to that described above for 

the long-term average behavior except that the rate constant k is greatly increased (time constant τ is greatly 

reduced).  (We shall often refer to the long-term average behavior as the “background” behavior.)  There are 

two situations that could exist: 

 

1. The short-term fluctuations have little or no effect on the long-term background behavior.  That is, the rate 

constant for the background behavior is unchanged as short-term fluctuations occur. 

2. The short-term fluctuations are evidence of changes in the long-term use of that mineral either because of 

the onset of new long-term social phenomena or new mineral technology (e.g., substitution of another 

mineral for it in its major use).  That is, the rate constant for the background behavior is changed as short-

term fluctuations occur. 

 

Of course, it is possible that the long-term background rate “constant” k is not really a constant in time even in 

the absence of fluctuations.  In fact, one would think that after a mineral has become an integral part of a 

society’s modus operandi that the society will make a large effort to keep its production rate up when it 

otherwise would decline sharply for constant k.  That is, the society’s increased efforts to extract the mineral 

will cause k to decrease with time rather than be constant.  This will cause the production-rate curve to be 

asymmetrically skewed toward large times; most nearly depleted United States minerals have such skewed 

production-rate curves.  Also, gradual substitution of one mineral for another (e.g., oil for coal) could cause k to 

change with time. 

 

Logistic Function 

 

Eq. (1) given above for the production rate P(t) as a function of the amount Q(t) yet to be extracted at time t can 

be solved to yield the widely-used logistic function (http://en.wikipedia.org/wiki/Logistic_function ): 

Q t Q
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,    Eq. (2) 

where τ ≡ 1
k

 is the time constant and  t1 2/  is the time at which the mineral is one-half depleted.  We shall label 

t1 2/  as the “half-date”.  Then 
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Variable Decay-Rate Model 
 

One can complicate the simple model developed above by assuming that the decay rate, k(t), is a function of 

time.  Then 

P t
dQ t

dt
k t

Q t

Q
Q Q t( ) = − = −

∞

∞

b g b g b g b g ,   Eq. (3)  

which has the solution 
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,   Eq. (4) 

where 

g t k t dt
tb g b g= z . 

This approach could be used to give the large-time skewing that often occurs in nearly depleted production data. 

 

Generalized Verhulst Function 

 

A more complicated, but still analytically solvable, case that contains Eqs. (2) and (4) above as special cases is 

the Verhulst function (http://www.roperld.com/science/minerals/verhulstfunction.htm ): 
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dQ t

dt

k t Q t

n

Q t

Q

n

b g b g b g b g b g
= − = −

F
HG
I
KJ

L
N
M
M

O
Q
P
P∞

1 ,   Eq. (5) 

which has the solution 
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Then 
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Note that this approach assumes that P(t) is linear in Q(t) for large times but is nonlinear in [Q∞-Q(t)] for small 

times. 

 

The maximum of ( )P t  is at 1/2 ln
2 1

m n

n
t t τ
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So, the peak is at 1/2t  only when 1n = . The deviation from 1/2t  is positive for 1n <  and is negative for 1n > . 

 

For n=1 Eq. (6) can be shown to be the same as Eq. (4) above, which is the same as Eq. (2) when k(t) in not a 

function of t.  However, even with k=constant, Eq. (6) contains a large-time skewing if n>1.  (The generalized 
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Verhulst curve is skewed toward short times for 0≥n>1, is symmetrical for n=1 and is skewed toward large 

times for n>1.)  The behaviors for large negative x and large positive x are: 

 

Large negative x: ( ) ( ) 1/22 1 expn t tQ
P t

nτ τ

− 
→ −  

 
, 

 

Large positive x: ( )
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That is, the large-negative-time exponential time constant is τ  and the large-positive-time exponential time 

constant is nτ . 

 

We choose Eq. (6) in fitting the nearly-depleted skewed data rather than the Eq. (4) because it is mathematically 

simpler. 

 

Here are some curves for the Verhulst function (Qh=1 in all graphs): 

 

The following curves are: 

(solid black: τ=1, t1/2=0, n=1), (dashed red: τ=1, t1/2=1, n=1), (dotted green: τ=2, t1/2=0, n=1) 

 
The following curves are: (solid black: τ=1, t1/2=0, n=4), (dashed red: τ=1, t1/2=0, n=2), 

(dotted green: τ=1, t1/2=0, n=0.5), (dot-dash purple: τ=1, t1/2=0, n=0.1) 
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Gompertz Function 

 

Another special case of the Verhulst curve [Eq. (6)] is when k=constant and n=0.  This yields the Gompertz 

curve, which is given by the equations: 
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This curve is skewed toward short times.  Then 
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Error/Gaussian Function 

 

There are at least two other symmetric peak functions that often occur in nature.  One is the Gaussian function 

(http://en.wikipedia.org/wiki/Gaussian_function ), which is given by the equations: 
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   Eq. (9) 

and 
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in terms of the Error function. (http://en.wikipedia.org/wiki/Error_function ). 

 

Inverse Cotangent Function 

 

Another symmetric peak function that often occurs in nature is the Lorentzian function 

(http://en.wikipedia.org/wiki/Lorentzian_function ), which is given by the equations: 
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    Eq. (11) 

and 
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One can show that this is a situation in which P(t) is proportional to [Q∞-Q(t)]
2
 for short times and to Q

2
(t) for 

long times but is not proportional to Q
2
(t)[Q∞-Q(t)]

 2
 for intermediate times. 
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