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Introduction 

 

Hodgkin and Huxley (HH) (https://en.wikipedia.org/wiki/Hodgkin%E2%80%93Huxley_model) 

introduced some mathematical equations to describe nerve excitation in 1954.. 

 

Total current flow:  

 
Ohms Law applied: 

 
Na and K channels opening, closing (and inactivating): 

 
The rates at which the channels open and close are voltage dependent: 
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Here V = depolarization potential inward. 
 

HH derived these equations by fitting voltage-clamp data for mV 56 49cV−   + in 

milliVolts. The resting potential is -62 mV, so the depolarization-potential range is 

6 109V+  + . 
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Voltage Dependence of Na and K Channels 

Consider the last set of equations that describe the voltage dependence of the Na and K channels. 

Functions that can achieve infinite values are generally not appropriate functions to represent 

physical data such as nerve excitation data. Of the six equations given directly above, only one 

behaves properly for large V: 
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What is needed are functions that move from one asymptote to another asymptote as the voltage 

changes. The two asymptotes represent two stable states of the nerve cell. The hyperbolic tangent 

(tanh) is such a function (http://www.roperld.com/science/HyperbolicTangentWorld.pdf). 

 

So, I have fitted tanh functions to the values as calculated by the HH voltage-dependent 

equations over the range +6 mV <= V <= +109 mV, where V = depolarization voltage. The 

result are shown in the graphs and equations below. 

 

http://www.roperld.com/science/HyperbolicTangentWorld.pdf
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The m  equation: 

 

m  = 0.465(1-tanh((V+14.0)/23.8). 

Note the minus sign before the tanh function, which is required to move from a higher state to a 

lower state. transition point is negative [-(-14) = +14)]. This curve does not show the asymptotic 

behavior; so the following graph shows it 

for a stretched-out ordinate: 
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The m  equation:  

 

m  = 26000(1+tanh((V-169)/35.5). 

The fit is so close that the two curves are not visually separated. 

 

This curve does not show the asymptotic behavior; so the following graph shows it for a  

stretched-out ordinate: 
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The h  equation: 

 

h  = 210(1+tanh((V-172)/39.3). 

The fit is so close that the two curves are not visually separated. 

 

This curve does not show the asymptotic behavior; so the following graph shows it for a  

stretched-out ordinate: 
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The h  equation: 

 

h  = 0.500(1-tanh((V+30.0)/20.0). 

Note the minus sign before the tanh function, which is required to move from a higher state to a 

lower state. The transition point is negative [-(-30) = +30)]. The fit is so close that the two curves 

are not visually separated. 

 

This curve does not show the asymptotic behavior; so the following graph shows it for a  

stretched-out ordinate: 
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The n  equation: 

 

n  = 0.191(1-tanh((V+22.4)/26.8). 

 

Note the minus sign before the tanh function, which is required to move from a higher state to a 

lower state. transition point is negative [-(-22.4) = +22.4)]. This curve does not show the 

asymptotic behavior; so the following graph shows it for a stretched-out ordinate: 
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The n  equation: 

 

n  = 2.88(1+tanh((V-290)/152). 

 

This curve does not show the asymptotic behavior; so the following graph shows it for a  

stretched-out ordinate: 
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Conclusion 

The set of rationalized equations is: 

 

m  = 0.465(1-tanh((V+14.0)/23.8) 

m  = 26000(1+tanh((V-169)/35.5) 

h  = 210(1+tanh((V-172)/39.3) 

h  = 0.500(1-tanh((V+30.0)/20.0) 

n  = 0.191(1-tanh((V+22.4)/26.8) 

n  = 2.88(1+tanh((V-290)/152) 

 

There may be other sets of parameters that yield equally good fits to the HH values in  +6 mV <= 

V <= +109 mV range. This work just shows that it is possible to fit the HH values with 

physically reasonable equations that asymptotically remain finite. 

 

Replacing the HH equations with these equations yields a much more physically reasonable 

theory regarding the channel states and the transitions between them. 


