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Abstract
This report contains equations that relate the phase shifts and partial-wave amplitudes

for elastic scattering. The effect of inelasticity on elastic scattering is included. Also,

resonance equations are given, and many curves show the behavior of a resonance as a

function of the various resonance parameters for the case of π − p scattering. In particular,

the unusual behavior of highly absorptive resonances is emphasized. (For the latest results

for π − p scattering see http://gwdac.phys.gwu.edu/analysis/pin_analysis.html .)
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Distribution in 1965

I. Introduction
Herein are listed many familiar equations regarding partial-wave scattering amplitudes

and phase shifts. The unusual behavior of inelastic resonances is elucidated algebraically

and graphically. We shall always consider the case where absorption occurs, as the elastic

case can be obtained by setting η = 1 .

We define:

S = ηe2iδ S matrix element for elastic scattering (unitarity requires that SS = 1)

A = S−1

2i
= 1

2i
ηe2iδ − 1 Partial-wave amplitude for elastic scattering

δ Phase shift for elastic scattering

η = e−2ν

Absorption parameter (a measure of the incident particles removed from

the beam due to inelastic scattering) (ν is the imaginary part of the

phase shift. We shall always use η rather than ν .)

Subscripts denoting the angular momentum, parity, and isotopic spin have been

suppressed on the quantities above.

k = c.m. momentum (in units of incident particle mass)

q0 = Incident particle c.m. total energy (in units of incident particle mass)

E = Incident particle lab. kinetic energy (MeV)

The equations relating the last three quantities are

k =
MT

Mi

EE + 2Mi

MT + Mi2 + 2MTE
and q0 = k2 + 1 ,

where MT and Mi are the target particle and incident particle masses (MeV),

respectively. The total c.m. energy is W = p0 + q0 , where the target particle c.m. total

energy is

p0 = k2 +
MT

Mi

2

,

both in units of the incident particle mass. (The speed of light c is set to 1.)

More kinematics equations are at the end.

II. Partial-Wave Amplitude Equations
The partial-wave amplitude is

A = 1
2
ηe2iδ − 1 = ηe iδ sinδ + i

2
1 − η η=1

 e iδ sinδ

η=0

 i
2

    1

(See Fig. 1 for loci of constant η and δ . See Ref. 1 for relationship between partial-wave

amplitudes and observables.)



Therefore:

Re A = 1
2
η sin 2δ η=1

 sinδcosδ

η=0

 0
, Im A = 1

2
1 − ηcos2δ η=1

 sin2δ

η=0

 1

2

− 1
2

≤ Re A ≤ 1
2

0 ≤ Im A ≤ 1

    2

  #   

tan 2δ = 2 Re A
1 − 2 Im A

, η2 = 2 Re A2 + 1 − 2 Im A2     3

tanδ =
2 Im A − 1 + 2 Re A2 + 1 − 2 Im A2

2 Re A
=

2 Im A − 1 + η
2 Re A η=1

 Im A
Re A

    4

Fig. 1. Loci of partial-wave amplitudes in the complex plane for constant η [circles of

radii η/2 centered at (0,1/2)] and for constant δ [radial lines emanating from (0,1/2) to a

distance of 1/2]. An arbitrary amplitude must lie inside or on the outer circle.

Other ways to write the relationships listed above:

S = ηe2iδ = η 1 + i tanδ
1 − i tanδ

.     5

A = S − 1
2i

=
i1 − η + η + 1 tanδ

21 − i tanδ η=1

 tanδ
1 − i tanδ

= 1
cotδ − i

;     6

therefore,

1
A η=1

 cotδ − i ;     7

Im A = |A|
2 + 1

4
1 − η2

η=1

 |A|
2     8

III. Resonance Formulas
Define:

q0r

Resonance position incident particle total c.m. energy

(in units of incident particle mass)

Er Resonance energy in terms of lab. kinetic energy of incident particle (MeV)

Γel Elastic full width at half maximum (in units of incident particle mass)

Γin Inelastic full width at half maximum (in units of incident particle mass)

Γ = Γel + Γin Total full width at half maximum

x =
Γel

Γ
Fractional elastic width

ε = 2

Γ
q0r − q0 Distance from the resonance position in units of the half width at half maximum

The Breit-Wigner resonance formula is2,3



AR =
Γel

2q0r − q0 − iΓ
= x

ε − i
x=1

 1

ε−1

x=0

 0
.     9

(See Fig. 2) (x = 1 represents pure elastic scattering. x = 0 represents no elastic scattering

at all).

SR = 1 + 2iAR = ε − 1 + 2ix
ε − i

x=1

 ε+i

ε−i

x=0

 1
.

Fig. 2. Loci of resonance partial-wave amplitudes1 in the complex plane for constant x

(circles of radii x/2 centered at 0, x/2 and for constant ε (radial lines emanating from 0. 0
to the outer circle). In general x is a slowly varying function of ε , so that the actual loci

approximate circles.

Therefore:

Re AR = εx
ε2 + 1

x=1

 ε
ε2+1

x=0

 0
, Im AR = x

ε2 + 1

x=1

 1

ε2+1

x=0

 0
    11

and

tan 2δR = 2εx
ε2 + 1 − 2x

x=1

 2ε
ε2−1 ε=0

 −2ε (i.e., δR
ε→0

 π/2)

x=0

 0 (i.e., δR = 0 for all values of ε)
,     12

ηR
2 =

ε2 + 2x − 12

ε2 + 1

x=1

 1

x=1/2

 ε2

ε2+1 ε=0

 0

x=0

 1

;     13

or

tanδR =
2x − ε2 − 1 + ε2 + 1 ε2 + 2x − 12

2εx x=1

 1
ε = Γ

2q0r − q0
    14

and

tanδR
ε→0


2x − 1 + 2x − 12

2εx
x≻1/2

 ∞ (i.e., δR = π/2)

x≺1/2

 0 (i.e., δR = 0 )

Equations (11) through (14) exhibit the following behavior (see Fig. 5):

Considering x as constant with respect to ε (more about this later):

(a) for x > 1/2 the phase shift (δR) passes through 90∘ at ε = 0 and asymptotically

approches 180∘ as ε → −∞ ; the absorption parameter (ηR) symmetrically dips (with respect

to ε) to a minimum (ηRmin = 2x − 1) at ε = 0 and asymptotically approaches 1 as ε → −∞ ;

(b) for x < 1/2 the phase shift (δR) passes through 0∘ at ε = 0 after having reached a



maximum [δRmax = 1

2
tan−1 x/ 1 − 2x < 45∘] at ε = 1 − 2x . It reaches a minimum

[δRmin = 1

2
tan−1 −x/ 1 − 2x > −45∘] at ε = − 1 − 2x and asymptotically approaches 0∘ at

ε → −∞ ; the absorption parameter symmetrically dips to a minimum (ηRmin = 1 − 2x) at ε = 0

and asymptotically approaches 1 as ε → −∞ .

(c) for for x = 1/2 the phase shift (δR) at ε = 0 as a function of x is discontinuous at

x = 1/2 [δRε = 0, x = 1/2 + Δ = 90∘,δRε = 0, x = 1/2 − Δ = 0∘ where Δ is a small positive

number, as shown below]; the absorption parameter symmetrically dips to zero at ε = 0 and

asymptotically approaches 1 as ε → −∞ .

tan 2δR x = 1/2 + Δ
ε1 + 2Δ
ε2 − 2Δ

ε→0

 ε1+2Δ
−2Δ

Δ→0

 −0 (i.e., δR = 90∘)

Δ→0

 1
ε

ε±0

 ±∞ (i.e., δR = ±45∘)

and

tan 2δR x = 1/2 − Δ
ε1 − 2Δ
ε2 + 2Δ

ε→0

 ε1−2Δ
2Δ

Δ→0

 +0 (i.e., δR = 0∘)

Δ→0

 1
ε

ε±0

 ±∞ (i.e., δR = ±45∘)
.

However, the partial-wave amplitudes at ε = 0 are, of course, not discontinuous for x = 1/2 .

That is, Re A and Im A are the physical quantities. δ and η are parameters in expressions for

the physical quantities.

The same general behavior occurs for non-constant widths as shown in Section V. We

make the following definition:

Elastic resonance: xE = Er = 1

Inelastic resonance:

Absorptive resonance: 1/2 < xE = Er < 1

Highly absorptive resonance: 0 < xE = Er ≤ 1/2

Other useful relations are:

ε =
ImSR

1−ReSR
=

ReAR

ImAR

x =
ReAR 2+ImAR 2

ImAR

x
ε =

ReAR 2+ImAR 2

ReAR
= 2

Γelq0r−q0 

    15

Resonance Width Energy Dependence
All widths are in units of the incident particle mass. We use pion-nucleon scattering in all

of the numerical examples.

A. Elastic Width

The simplest assumption would be to set Γel constant with ε. However, the width should

have a threshold behavior k2ℓ+1, so we could use Γel  k2ℓ+1. Resonance theory as given by

Breit and Weisskopf2 gives Γel = 2γ2kr0Vℓkr0, where



γ2 = reduced width,

r0 = interaction range (in units of incident particle Compton wavelength), and

Vℓr0k = barrier penetration factor given by

Vℓr0k = 1

r0k2 jℓ
2r0k+nℓ

2r0k
k→0


r
0
ℓ

1⋅3⋅5…2ℓ−1

2

k2ℓ

k→∞
 1

.     16

Reference for the spherical Bessel functions jℓkr0 and nℓkr0 = yℓkr0.

For example:

V0r0k = 1 , V1r0k =
r0k2

1+r0k2
,

V2r0k =
r0k4

9+3r0k2+r0k4
, and

V3r0k =
r0k6

225+45r0k2+6r0k4+r0k6
.

V4r0k =
r0k8

11025+1575r0k2+135r0k4+10r0k6+r0k8

Fig. 3a contains plots of Vℓkr0 for ℓ values from 0 to 5 and r0 = 0. 71 (≃ 1 fermi for

pion-nucleon scattering). Fig. 3b contains plots for Vℓr0k for ℓ = 2 and various values of r0 .

Layson4 has derived Γel by means of the Klein-Gordon equation rather than the

Schrödinger equation. His result is

Γel =
4M

q0 + q0r

γ2kr0Vℓr0k ,

where M is the target-particle mass (in units of the incident-particle mass.). Thus, our

possible form∑ for Γel are:

(a) Γel = C

(b) Γel = C′k2ℓ+1

(c) Γel = 2γ2kr0Vℓr0k

(d) Γel =
4M

q0+q0r
γ2kr0Vℓr0k

    17

In Fig. 4 we compare the four forms by setting C, C′,γ2 and γ2 such that ΓelE = Er is the

same for all four forms. There are two examples. In both examples ℓ = 2, r0 = 0. 71 and

Er = 600 MeV.

(1) ΓelE = Er = 0. 5 . (This corresponds to C = 0. 5, C′ = 0. 00143,γ2 = 0. 20702,γ2 = 0. 10408 .)

(Dashed curves)

(2) ΓelE = Er = 1. 0 .(This corresponds to C = 1. 0, C′ = 0. 00285,γ2 = 0. 4404,γ2 = 0. 20815 . )

(Solid curves)

It is obvious that one cannot use a constant width or Γel = C′k2ℓ+1 and expect better than

10% accuracy beyond 50 MeV from the resonance position.

In Ref. 1, where the P11 partial wave has a zero at about 150 MeV, well below the

resonance position at about 560 MeV, a modification of the Layson elastic-width formula is



used to allow the zero:

Γel =
q0 − qz

q0

4M
q0 + q0r

γ2r0kVℓr0k .     17a

See http://www.roperld.com/science/PionNucleonP11.pdf , where this formula is used.

In Fig. 5a we plot form (d) for Γel with different values of r0 . We use ℓ = 2, Er = 600

MeV, and ΓelE = Er = 1. 0 .

r0 = 0. 177 0. 25 fermi γ2 = 41. 66267

r0 = 0. 355 0. 5 fermi γ2 = 1. 86624

r0 = 0. 71 1. 0 fermi γ2 = 0. 20815

r0 = 1. 065 1. 5 fermi γ2 = 0. 09641

r0 = 1. 41 2. 0 fermi γ2 = 0. 06439

r0 = 1. 775 2. 5 fermi γ2 = 0. 04825

Fig. 5b shows form (d) for γ2 = 0. 20815 and different values of r0. (This corresponds to

ΓelE = Er = 1. 0 for r0 = 0. 71 .) We use ℓ = 2 and Er = 600 MeV.

In Fig. 6a we use form (d) and compare Γel [normalized such that ΓelE = Er = 1. 0 ] for

values of ℓ from 0 to 3. We use r0 = 0. 71 and Er = 600 MeV. The values of γ2 for each ℓ

value are:

ℓ = 0 : γ2 = 0. 10969 ℓ = 2 : γ2 = 0. 20815

ℓ = 1 : γ2 = 0. 13058 ℓ = 3 : γ2 = 0. 58443

Fig. 6b shows form (d) for values of ℓ from 0 to 3 for γ2 = 0. 10969 . (This corresponds to

ΓelE = Er = 1. 0 for ℓ = 0 .) We use r0 = 0. 71 and Er = 600 MeV.

B. Inelastic Width

Below threshold k = k0 for inelastic scattering, Γin = 0 . (For pion-nucleon scattering

k0 = 1. 479 .) So the simplest assumption would be Γin = Cinθk − k0 , where we use the

step function

θk − k0 =
1 for k ≥ k0

0 for k < k0

.

Or, we could give it the threshold behavior Γin = C′ θk − k0k − k02ℓ+1 .. The problem

here is that we do not know what value of ℓ to use. Assume that the inelastic final state is a

two-body state. This final state may have a different orbital angular momentum ℓ′ than the

initial state; the final state value is the one that should be used. For example, the process

π + p  σ + p , where σ is a 0++ low-mass meson,

may be the dominant mechanism for inelastic scattering in the P11 pion-nucleon state. If so,

the initial ℓ = 1 and the final ℓ′ = 0 . Thus the threshold behavior should be k − k0 rather

than k − k03 . In the numerical examples given below we assume that the final and initial

ℓ′s are identical.

Analogous to the elastic case, we could use the following forms for Γin :



(a) Γin = Cinθk − k0

(b) Γin = Cin
′ k − k02ℓ+1θk − k0

(c) Γin = 2γ in
2 k − k0r0Vk − k0r0 θk − k0

(d) Γin = 4M
q0+q0r

γ
in
2 k − k0r0Vk − k0r0 θk − k0

    18

Actually, for a two-body inelastic final state one should use k ′ , the final-state c.m.

momentum, rather than k − k0 .Its relation to the total c.m. energy W is

k ′ = 1
2W

W2 +
M1

′

M1

2

−
M2

′

M1

2 2

− 4
M1

′

M1

2

W2

(in units of incident-particle mass), where the final state particle masses are M1
′ and M2

′ (in

units of the incident-particle mass). In terms of these final-state masses, the inelastic

threshold c.m. momentum is

k = M
EE + 2

M + 12 + 2ME
,

where the threshold incident particle lab. kinetic energy (in units of the incident-particle

mass) is

E =
M1

′ + M2
′ 2 − M + 12

2M
.

∴ k = 1

2 M1
′ +M2

′ M1
′ + M2

′ 2 − M + 12 M1
′ + M2

′ 2 − M + 12 + 4M

When there are several possible two-body inelastic final states2,

Γin = ∑
i

ΓinM1i
′ , M2i

′ 

where the sum goes over all possible final states. Of course, there may be three- or

many-body inelastic final states possible, also. For purposes of illustration we use k − k0
rather than k ′ and only one inelastic width.

In Fig. 7 we compare the four forms for the energy dependence of Γin . We set

ΓinE = Er = 0. 5 for all four forms, which dictates that

Cin = 0. 5, Cin
′ = 0. 03059,γ in

2 = 1. 35616, and γ
in
2 = 0. 68179 . We use ℓ = 2, r0 = 0. 71

k0 = 1. 479 and Er = 600 MeV.

In Fig. 8a we plot form (d) for Γin with different values of r0 . We use ℓ = 2, Er = 600 MeV

and ΓinE = Er = 0. 5 .



r0 = 0. 177 0. 25 fermi γ
in
2 = 411. 41793

r0 = 0. 355 0. 5 fermi γ
in
2 = 14. 05116

r0 = 0. 71 1. 0 fermi γ
in
2 = 0. 68179

r0 = 1. 065 1. 5 fermi γ
in
2 = 0. 17638

r0 = 1. 41 2. 0 fermi γ
in
2 = 0. 08855

r0 = 1. 775 2. 5 fermi γ
in
2 = 0. 05703

Fig. 8b shows form (d) for different values of r0 and γ
in
2 = 0. 68179 . (This corresponds to

ΓinE = Er = 0. 5 for r0 = 0. 71 .) We use ℓ = 2 and Er = 600 MeV.

In Fig. 9a we use form (d) and compare Γin , [normalized such that ΓinE = Er = 0. 5] for

values of ℓ from 0 to 3. We use r0 = 0. 71, k0 = 1. 479 and Er = 600 MeV. The values of γ
in
2

for each ℓ value are:

ℓ = 0 : γ
in
2 = 0. 10123 ℓ = 2 : γ

in
2 = 0. 68179

ℓ = 1 : γ
in
2 = 0. 16691 ℓ = 3 : γ

in
2 = 8. 63331

Fig. 9b shows form (d) for values of ℓ from 0 to 3. for γ
in
2 = 0. 10123 . (This corresponds

to ΓinE = Er = 0. 5 for ℓ = 0 .) We use r0 = 0. 71, k0 = 1. 479 and Er = 600 MeV.

C. Important Observation

Figs. 4 and 7 make it evident that the choice of the resonance-width energy dependence

may be important, even in the vicinity of the resonance position.

V. Numerical Examples of Resonance Phase Shifts, Absorption

Parameters, and Partial-Wave Amplitudes

A. Comparison of the Four Forms for the Width Energy Dependence

Four numerical examples are shown in Fig. 10 in each of which we compare the four

forms for the energy dependence of the elastic and inelastic widths. In all four examples

ℓ = 2,ΓE = Er = 1. 0, r0 = 0. 71 k0 = 1. 479 and Er = 600 MeV. The first two examples are in

Fig. 10a and the last two are in Fig. 10b.

(1) ΓelE = Er = 1. 0,ΓinE = Er = 0 .(This corresponds to

C = 1. 0, C′ = 0. 00285,γ2 = 0. 41404,γ2 = 0. 20815 and Cin = Cin
′ = γ in

2 = γ
in
2 = 0 .) Of

course,η = 1 everywhere for this example and Re A and Im A reach their unitary limits.

(Solid curves)

(2) ΓelE = Er = 0. 5,ΓinE = Er = 0. 5 .(This corresponds to

C = 0. 5, C′ = 0. 3,γ2 = 0. 20702,γ2 = 0. 10408 and

Cin = 0. 5, Cin
′ = 0. 03059,γ in

2 = 1. 35616,γ
in
2 = 0. 68179 .) The discontinuity in δ at ε = 0, x = 1/2

is plainly visible. Note that the peak of Im A is shifted to the low-energy side in the case of

non-constant widths. (Dashed curves)

(3) ΓelE = Er = 0. 25,ΓinE = Er = 0. 75 .(This corresponds to

C = 0. 25, C′ = 0. 00071,γ2 = 0. 10351,γ2 = 0. 05204 and

Cin = 0. 75, Cin
′ = 0. 04588,γ in

2 = 2. 03423,γ
in
2 = 1. 02268 .) Form (a) for this example and the



next example give identical η′s. Note that the dip in η is shifted to the low-energy side in the

cases of non-constant widths. (Dashed curves)

(4) ΓelE = Er = 0. 75,ΓinE = Er = 0. 25 .(This corresponds to

C = 0. 75, C′ = 0. 00214,γ2 = 0. 31053,γ2 = 0. 15611 and

Cin = 0. 25, Cin
′ = 0. 01529,γ in

2 = 0. 67808,γ
in
2 = 0. 34089 .) Form (a) for this example and the

previous example give identical η′s. Note that the dip in η is shifted to the low-energy side in

the cases of non-constant widths. (Solid curves)

(B) Comparison for Various Values of x Using Form (d) for the Width Energy

Dependence

From here on all examples will use form (d) for the elastic and inelastic widths. Nine

numerical examples are shown in Fig. 11a for nine different values of x = Γel/Γ at E = Er .

In all nine examples ℓ = 2,ΓE = Er = 1. 0, r0 = 0. 71, k0 = 1. 479 and Er = 600 MeV.

(1) xE = Er = 0. 0 . (This corresponds to γ2 = 0 and γ
in
2 = arbitrary) This example is no

elastic scattering at all (A = 0,δ = 0,η = 1).

(2) xE = Er = 0. 125 . (This corresponds to γ2 = 0. 02602 and γ
in
2 = 1. 19303).

(3) xE = Er = 0. 25 . (This corresponds to γ2 = 0. 05204 and γ
in
2 = 1. 022668).

(4) xE = Er = 0. 375 . (This corresponds to γ2 = 0. 07806 and γ
in
2 = 0. 85223).

(5) xE = Er = 0. 5 . (This corresponds to γ2 = 0. 10408 and γ
in
2 = 0. 68179). The

discontinuity at ε = 0, x = 1/2 is plainly visible.

(6) xE = Er = 0. 625 . (This corresponds to γ2 = 0. 13010 and γ
in
2 = 0. 51134).

(7) xE = Er = 0. 75 . (This corresponds to γ2 = 0. 15611 and γ
in
2 = 0. 34089).

(8) xE = Er = 1. 0 . (This corresponds to γ2 = 0. 20815 and γ
in
2 = 0). This example is

pure elastic scattering (η = 1).

In Fig. 11b we compare elastic resonances xE = Er = 1 for different values of γ2. We

use ℓ = 2, r0 = 0. 71,and Er = 600 MeV.

(1) ΓE = Er = 1. 5 γ2 = 0. 31223
(2) ΓE = Er = 1. 25 γ2 = 0. 26019
(3) ΓE = Er = 1. 0 γ2 = 0. 20815
(4) ΓE = Er = 0. 75 γ2 = 0. 15611
(5) ΓE = Er = 0. 5 γ2 = 0. 10408
(2) ΓE = Er = 0. 25 γ2 = 005204

Comparison for Various Values of r0

In the examples given here ℓ = 2, k0 = 1. 479, and Er = 600 MeV. We use form (d) for

widths. Numerical examples for different values of r0 at two values of xE = Er are given in

Fig. 12a.

(1) ΓelE = Er = 0. 5 and ΓinE = Er = 1. 0 . That is:

γ2 = 0. 93312 and γ
in
2 = 28. 10232 for r0 = 0. 355 0. 5 fermi

γ2 = 0. 10408 and γ
in
2 = 1. 36357 for r0 = 0. 71 1. 0 fermi

γ2 = 0. 04820 and γ
in
2 = 0. 35275 for r0 = 1. 065 1. 5 fermi

γ2 = 0. 03220 and γ
in
2 = 0. 17710 for r0 = 1. 41 2. 0 fermi



(2) ΓelE = Er = 1. 0 and ΓinE = Er = 0. 5 . That is:

γ2 = 1. 86624 and γ
in
2 = 14. 05116 for r0 = 0. 355 0. 5 fermi

γ2 = 0. 20815 and γ
in
2 = 0. 68179 for r0 = 0. 71 1. 0 fermi

γ2 = 0. 09641 and γ
in
2 = 0. 17638 for r0 = 1. 065 1. 5 fermi

γ2 = 0. 06439 and γ
in
2 = 0. 08855 for r0 = 1. 41 2. 0 fermi

Examples for different values of r0 with γ2 = 0. 20815 and γ
in
2 = 0. 68179 are given in

Fig. 12b. (This corresponds to ΓelE = Er = 1. 0 and ΓinE = Er = 0. 5 for r0 = 0. 71.)

D. Comparison for Various Values of k0

In the examples given here ℓ = 2, r0 = 0. 71, and Er = 600 MeV. We use form (d) for the

widths. Numerical examples for different values of k0 at two values of xE = Er are given in

Fig. 13a.

(1) ΓelE = Er = 0. 5 and ΓinE = Er = 1. 0 . That is:

γ2 = 0. 10408 and γ
in
2 = 1. 36357 for k0 = 1. 479 161 MeV = one-pion production

γ2 = 0. 10408 and γ
in
2 = 22. 9684 for k0 = 2. 315 344 MeV = two-pion production

γ2 = 0. 10408 and γ
in
2 = 70. 65652 for k0 = 2. 507 393 MeV = N33

∗ production

(1) ΓelE = Er = 1. 0 and ΓinE = Er = 0. 5 . That is:

γ2 = 0. 20815 and γ
in
2 = 0. 68179 for k0 = 1. 479 161 MeV = one-pion production

γ2 = 0. 20815 and γ
in
2 = 11. 48477 for k0 = 2. 315 344 MeV = two-pion production

γ2 = 0. 20815 and γ
in
2 = 35. 32826 for k0 = 2. 507 393 MeV = N33

∗ production

Examples for different values of k0 with γ2 = 0. 20815 and γ
in
2 = 0. 68179 are given in

Fig. 13b. (This corresponds to ΓelE = Er = 1. 0 and ΓinE = Er = 0. 5 for k0 = 1. 479 .)

E. Comparison for Various Values of Er

In the examples given here ℓ = 2, r0 = 0. 71, and k0 = 1. 479 . We use form (d) for the

widths. Numerical examples for different values of Er at two values of xE = Er are given in

Fig. 14a.

(1) ΓelE = Er = 0. 5 and ΓinE = Er = 1. 0 . That is:

γ2 = 0.15699 and γ
in
2 = 9. 47628 for Er = 400 MeV

γ2 = 0. 10408 and γ
in
2 = 1. 36357 for Er = 600 MeV

γ2 = 0. 08509 and γ
in
2 = 0. 57269 for Er = 800 MeV

(2) ΓelE = Er = 1. 0 and ΓinE = Er = 0. 5 . That is:

γ2 = 0.31397 and γ
in
2 = 4. 73814 for Er = 400 MeV

γ2 = 0. 20815 and γ
in
2 = 0. 68179 for Er = 600 MeV

γ2 = 0. 17018 and γ
in
2 = 0. 28634 for Er = 800 MeV

Examples for different values of Er with γ2 = 0. 20815 and γ
in
2 = 0. 68179 are given in

Fig. 14b. (This corresponds to ΓelE = Er = 1. 0 and ΓinE = Er = 0. 5 for Er = 600 MeV.)

F. Comparison for various values of ℓ

In the examples that follow r0 = 0. 71, k0 = 1. 479 and Er = 600 MeV. We use form (d) for

the widths. Examples for different values of ℓ at two values of xE = Er are given in

Fig. 15a.



(1) ΓelE = Er = 0. 5 and ΓinE = Er = 1. 0 . That is:

γ2 = 0.05485 and γ
in
2 = 0. 20247 for ℓ = 0

γ2 = 0. 06529 and γ
in
2 = 0. 33383 for ℓ = 1

γ2 = 0. 10408 and γ
in
2 = 1. 36357 for ℓ = 2

γ2 = 0. 29222 and γ
in
2 = 17. 26663 for ℓ = 3

(1) ΓelE = Er = 1. 0 and ΓinE = Er = 0. 5 . That is:

γ2 = 0.10969 and γ
in
2 = 0. 10123 for ℓ = 0

γ2 = 0. 13058 and γ
in
2 = 0. 16691 for ℓ = 1

γ2 = 0. 20815 and γ
in
2 = 0. 68179 for ℓ = 2

γ2 = 0. 58443 and γ
in
2 = 8. 6331 for ℓ = 3

Examples for different values of ℓ with γ2 = 0. 10969 and γ
in
2 = 0. 10123 are given in

Fig. 15b. (This corresponds to ΓelE = Er = 1. 0 and ΓinE = Er = 0. 5 for ℓ = 0 .)

G. Important Observations

In Fig. 11 we see that, even though the phase shift may be small for an inelastic

resonance, there is distinctive behavior that may enable one to identify such a resonance in

a phase-shift analysis; viz., the phase shift passes downward through zero at the resonance

position and the absorption parameter has a deep dip slightly to the low-energy side of the

resonance position. Stated in terms of the partial-wave amplitude the same words apply for

an elastic resonance; viz., the real part of the amplitude passes downward through zero at

the resonance position and the imaginary part has a peak slightly to the low-energy side of

the resonance position. Of course, a large background in the same state as the resonance

could obliterate some of these distinguishing features.

More Kinematics
Here are some more useful equations:

s = W2 = k2 + m2 + k2 + M2
2

= q0 + p02 = m + M2 + 2ME

k =
s−m2−M2 2−4m2M2

4s
= 1

2W
W4 − 2M2 + m2W2 + M2 − m22

= 1

2W
W2 − M + m2 W2 − M − m2

q0 = 1

2W
W4 − 2M2 − m2W2 + M2 − m22

= 1

2W
W2 − M2 − m2

∴ p0 = W − q0 = 1

2W
W2 + M2 − m2
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